The rewrite relation of the following TRS is considered.
| 0(1(0(0(x1)))) | → | 2(0(2(0(0(1(x1)))))) | (1) |
| 1(0(0(1(x1)))) | → | 1(0(3(0(1(x1))))) | (2) |
| 1(0(0(4(x1)))) | → | 1(4(0(2(0(x1))))) | (3) |
| 1(0(0(4(x1)))) | → | 1(4(0(3(2(0(x1)))))) | (4) |
| 1(0(1(0(x1)))) | → | 1(3(0(0(3(1(x1)))))) | (5) |
| 1(0(1(4(x1)))) | → | 1(0(3(1(2(4(x1)))))) | (6) |
| 1(0(1(5(x1)))) | → | 1(0(2(1(5(x1))))) | (7) |
| 1(0(4(1(x1)))) | → | 1(0(3(4(1(x1))))) | (8) |
| 1(0(5(0(x1)))) | → | 1(2(5(2(0(0(x1)))))) | (9) |
| 1(2(0(4(x1)))) | → | 1(3(4(2(0(x1))))) | (10) |
| 1(3(0(4(x1)))) | → | 1(3(4(2(0(x1))))) | (11) |
| 1(4(1(0(x1)))) | → | 1(4(0(2(1(x1))))) | (12) |
| 1(4(1(0(x1)))) | → | 1(4(0(3(1(x1))))) | (13) |
| 1(4(5(0(x1)))) | → | 4(0(2(1(2(5(x1)))))) | (14) |
| 1(5(0(1(x1)))) | → | 0(1(3(1(3(5(x1)))))) | (15) |
| 1(5(0(1(x1)))) | → | 1(5(0(3(1(3(x1)))))) | (16) |
| 4(1(0(0(x1)))) | → | 0(2(4(2(0(1(x1)))))) | (17) |
| 4(1(0(0(x1)))) | → | 0(3(4(3(0(1(x1)))))) | (18) |
| 4(1(0(5(x1)))) | → | 4(0(2(1(5(x1))))) | (19) |
| 4(1(2(0(x1)))) | → | 3(0(2(1(3(4(x1)))))) | (20) |
| 4(5(0(0(x1)))) | → | 3(0(4(0(5(x1))))) | (21) |
| 5(0(0(4(x1)))) | → | 5(4(0(2(0(x1))))) | (22) |
| 5(0(1(4(x1)))) | → | 1(5(4(3(0(x1))))) | (23) |
| 5(4(1(5(x1)))) | → | 4(3(1(5(5(x1))))) | (24) |
| 1(0(1(4(5(x1))))) | → | 1(3(1(5(4(0(x1)))))) | (25) |
| 1(0(4(0(4(x1))))) | → | 1(0(4(3(4(0(x1)))))) | (26) |
| 1(1(1(0(0(x1))))) | → | 1(1(0(0(3(1(x1)))))) | (27) |
| 1(1(4(5(0(x1))))) | → | 1(1(3(4(0(5(x1)))))) | (28) |
| 1(2(0(5(0(x1))))) | → | 5(2(1(0(2(0(x1)))))) | (29) |
| 1(4(5(0(0(x1))))) | → | 4(0(5(0(2(1(x1)))))) | (30) |
| 1(4(5(2(0(x1))))) | → | 0(3(1(2(5(4(x1)))))) | (31) |
| 1(5(0(4(5(x1))))) | → | 3(4(0(5(1(5(x1)))))) | (32) |
| 4(1(0(0(1(x1))))) | → | 1(0(4(0(3(1(x1)))))) | (33) |
| 4(1(2(0(0(x1))))) | → | 4(2(0(0(2(1(x1)))))) | (34) |
| 4(1(3(0(5(x1))))) | → | 3(2(4(0(1(5(x1)))))) | (35) |
| 4(1(5(3(1(x1))))) | → | 2(1(5(4(3(1(x1)))))) | (36) |
| 4(4(1(0(1(x1))))) | → | 1(3(4(4(0(1(x1)))))) | (37) |
| 4(5(0(1(0(x1))))) | → | 4(0(0(5(3(1(x1)))))) | (38) |
| 4(5(1(1(0(x1))))) | → | 1(1(3(4(0(5(x1)))))) | (39) |
| 4(5(1(1(0(x1))))) | → | 4(0(2(1(5(1(x1)))))) | (40) |
| 4(5(1(5(1(x1))))) | → | 4(1(5(5(3(1(x1)))))) | (41) |
| 4(5(5(0(4(x1))))) | → | 5(4(0(5(4(2(x1)))))) | (42) |
| 5(0(0(4(1(x1))))) | → | 5(4(0(3(0(1(x1)))))) | (43) |
| 5(0(0(4(5(x1))))) | → | 0(3(4(0(5(5(x1)))))) | (44) |
| 5(0(0(4(5(x1))))) | → | 4(0(0(3(5(5(x1)))))) | (45) |
| 5(0(4(1(0(x1))))) | → | 5(0(4(0(3(1(x1)))))) | (46) |
| 5(1(5(0(1(x1))))) | → | 5(0(3(5(1(1(x1)))))) | (47) |
| 5(4(1(1(0(x1))))) | → | 1(2(4(0(1(5(x1)))))) | (48) |
| 5(4(5(1(0(x1))))) | → | 5(5(1(3(4(0(x1)))))) | (49) |
| 5(5(2(0(4(x1))))) | → | 5(5(3(4(2(0(x1)))))) | (50) |
There are 189 ruless (increase limit for explicit display).
The dependency pairs are split into 1 component.
| 0#(1(0(0(x1)))) | → | 0#(1(x1)) | (53) |
| 0#(1(0(0(x1)))) | → | 0#(0(1(x1))) | (52) |
| 0#(1(0(0(x1)))) | → | 1#(x1) | (54) |
| 1#(0(0(4(x1)))) | → | 0#(x1) | (60) |
| 1#(0(1(0(x1)))) | → | 1#(x1) | (67) |
| 1#(0(1(4(x1)))) | → | 1#(2(4(x1))) | (70) |
| 1#(2(0(4(x1)))) | → | 0#(x1) | (80) |
| 1#(0(5(0(x1)))) | → | 0#(0(x1)) | (77) |
| 1#(3(0(4(x1)))) | → | 0#(x1) | (83) |
| 1#(4(1(0(x1)))) | → | 1#(x1) | (87) |
| 1#(4(5(0(x1)))) | → | 1#(2(5(x1))) | (93) |
| 1#(4(5(0(x1)))) | → | 5#(x1) | (94) |
| 5#(0(0(4(x1)))) | → | 0#(x1) | (122) |
| 5#(0(1(4(x1)))) | → | 0#(x1) | (126) |
| 5#(4(1(5(x1)))) | → | 1#(5(5(x1))) | (128) |
| 1#(5(0(1(x1)))) | → | 0#(1(3(1(3(5(x1)))))) | (95) |
| 1#(5(0(1(x1)))) | → | 1#(3(1(3(5(x1))))) | (96) |
| 1#(5(0(1(x1)))) | → | 1#(3(5(x1))) | (97) |
| 1#(5(0(1(x1)))) | → | 5#(x1) | (98) |
| 5#(4(1(5(x1)))) | → | 5#(5(x1)) | (129) |
| 5#(0(0(4(1(x1))))) | → | 0#(1(x1)) | (210) |
| 5#(0(0(4(5(x1))))) | → | 4#(0(5(5(x1)))) | (212) |
| 4#(1(0(0(x1)))) | → | 0#(1(x1)) | (105) |
| 4#(1(0(0(x1)))) | → | 1#(x1) | (106) |
| 1#(5(0(1(x1)))) | → | 1#(3(x1)) | (102) |
| 1#(0(1(4(5(x1))))) | → | 1#(3(1(5(4(0(x1)))))) | (130) |
| 1#(0(1(4(5(x1))))) | → | 1#(5(4(0(x1)))) | (131) |
| 1#(0(1(4(5(x1))))) | → | 5#(4(0(x1))) | (132) |
| 5#(0(0(4(5(x1))))) | → | 0#(5(5(x1))) | (213) |
| 5#(0(0(4(5(x1))))) | → | 5#(5(x1)) | (214) |
| 5#(0(4(1(0(x1))))) | → | 1#(x1) | (222) |
| 1#(0(1(4(5(x1))))) | → | 4#(0(x1)) | (133) |
| 4#(1(0(5(x1)))) | → | 1#(5(x1)) | (111) |
| 1#(0(1(4(5(x1))))) | → | 0#(x1) | (134) |
| 1#(0(4(0(4(x1))))) | → | 4#(0(x1)) | (138) |
| 4#(1(2(0(x1)))) | → | 1#(3(4(x1))) | (113) |
| 4#(1(2(0(x1)))) | → | 4#(x1) | (114) |
| 4#(5(0(0(x1)))) | → | 0#(4(0(5(x1)))) | (115) |
| 4#(5(0(0(x1)))) | → | 4#(0(5(x1))) | (116) |
| 4#(5(0(0(x1)))) | → | 0#(5(x1)) | (117) |
| 4#(5(0(0(x1)))) | → | 5#(x1) | (118) |
| 5#(1(5(0(1(x1))))) | → | 5#(1(1(x1))) | (225) |
| 5#(1(5(0(1(x1))))) | → | 1#(1(x1)) | (226) |
| 1#(0(4(0(4(x1))))) | → | 0#(x1) | (139) |
| 1#(1(1(0(0(x1))))) | → | 1#(x1) | (144) |
| 1#(1(4(5(0(x1))))) | → | 1#(1(3(4(0(5(x1)))))) | (145) |
| 1#(1(4(5(0(x1))))) | → | 1#(3(4(0(5(x1))))) | (146) |
| 1#(1(4(5(0(x1))))) | → | 4#(0(5(x1))) | (147) |
| 4#(1(2(0(0(x1))))) | → | 1#(x1) | (173) |
| 1#(1(4(5(0(x1))))) | → | 0#(5(x1)) | (148) |
| 1#(1(4(5(0(x1))))) | → | 5#(x1) | (149) |
| 5#(4(1(1(0(x1))))) | → | 1#(2(4(0(1(5(x1)))))) | (227) |
| 5#(4(1(1(0(x1))))) | → | 4#(0(1(5(x1)))) | (228) |
| 4#(1(3(0(5(x1))))) | → | 4#(0(1(5(x1)))) | (174) |
| 4#(1(3(0(5(x1))))) | → | 0#(1(5(x1))) | (175) |
| 4#(1(3(0(5(x1))))) | → | 1#(5(x1)) | (176) |
| 1#(4(5(0(0(x1))))) | → | 1#(x1) | (157) |
| 1#(4(5(2(0(x1))))) | → | 1#(2(5(4(x1)))) | (159) |
| 1#(4(5(2(0(x1))))) | → | 5#(4(x1)) | (160) |
| 5#(4(1(1(0(x1))))) | → | 0#(1(5(x1))) | (229) |
| 5#(4(1(1(0(x1))))) | → | 1#(5(x1)) | (230) |
| 1#(4(5(2(0(x1))))) | → | 4#(x1) | (161) |
| 4#(4(1(0(1(x1))))) | → | 1#(3(4(4(0(1(x1)))))) | (180) |
| 4#(4(1(0(1(x1))))) | → | 4#(4(0(1(x1)))) | (181) |
| 4#(4(1(0(1(x1))))) | → | 4#(0(1(x1))) | (182) |
| 4#(5(0(1(0(x1))))) | → | 1#(x1) | (187) |
| 1#(5(0(4(5(x1))))) | → | 4#(0(5(1(5(x1))))) | (162) |
| 4#(5(1(1(0(x1))))) | → | 1#(1(3(4(0(5(x1)))))) | (188) |
| 1#(5(0(4(5(x1))))) | → | 0#(5(1(5(x1)))) | (163) |
| 1#(5(0(4(5(x1))))) | → | 5#(1(5(x1))) | (164) |
| 5#(4(1(1(0(x1))))) | → | 5#(x1) | (231) |
| 5#(4(5(1(0(x1))))) | → | 5#(5(1(3(4(0(x1)))))) | (232) |
| 5#(4(5(1(0(x1))))) | → | 5#(1(3(4(0(x1))))) | (233) |
| 5#(4(5(1(0(x1))))) | → | 1#(3(4(0(x1)))) | (234) |
| 5#(4(5(1(0(x1))))) | → | 4#(0(x1)) | (235) |
| 4#(5(1(1(0(x1))))) | → | 1#(3(4(0(5(x1))))) | (189) |
| 4#(5(1(1(0(x1))))) | → | 4#(0(5(x1))) | (190) |
| 4#(5(1(1(0(x1))))) | → | 0#(5(x1)) | (191) |
| 4#(5(1(1(0(x1))))) | → | 5#(x1) | (192) |
| 5#(5(2(0(4(x1))))) | → | 0#(x1) | (239) |
| 4#(5(1(1(0(x1))))) | → | 1#(5(1(x1))) | (195) |
| 1#(5(0(4(5(x1))))) | → | 1#(5(x1)) | (165) |
| 4#(5(1(1(0(x1))))) | → | 5#(1(x1)) | (196) |
| 4#(5(1(1(0(x1))))) | → | 1#(x1) | (197) |
| [0#(x1)] | = | 1 · x1 |
| [1(x1)] | = | 1 + 1 · x1 |
| [0(x1)] | = | 1 · x1 |
| [1#(x1)] | = | 1 + 1 · x1 |
| [4(x1)] | = | 1 · x1 |
| [2(x1)] | = | 1 · x1 |
| [5(x1)] | = | 1 · x1 |
| [3(x1)] | = | 1 · x1 |
| [5#(x1)] | = | 1 · x1 |
| [4#(x1)] | = | 1 · x1 |
| 1#(0(0(4(x1)))) | → | 0#(x1) | (60) |
| 1#(0(1(0(x1)))) | → | 1#(x1) | (67) |
| 1#(0(1(4(x1)))) | → | 1#(2(4(x1))) | (70) |
| 1#(2(0(4(x1)))) | → | 0#(x1) | (80) |
| 1#(0(5(0(x1)))) | → | 0#(0(x1)) | (77) |
| 1#(3(0(4(x1)))) | → | 0#(x1) | (83) |
| 1#(4(1(0(x1)))) | → | 1#(x1) | (87) |
| 1#(4(5(0(x1)))) | → | 5#(x1) | (94) |
| 5#(0(1(4(x1)))) | → | 0#(x1) | (126) |
| 1#(5(0(1(x1)))) | → | 1#(3(5(x1))) | (97) |
| 1#(5(0(1(x1)))) | → | 5#(x1) | (98) |
| 5#(4(1(5(x1)))) | → | 5#(5(x1)) | (129) |
| 1#(5(0(1(x1)))) | → | 1#(3(x1)) | (102) |
| 1#(0(1(4(5(x1))))) | → | 1#(5(4(0(x1)))) | (131) |
| 1#(0(1(4(5(x1))))) | → | 5#(4(0(x1))) | (132) |
| 1#(0(1(4(5(x1))))) | → | 4#(0(x1)) | (133) |
| 1#(0(1(4(5(x1))))) | → | 0#(x1) | (134) |
| 1#(0(4(0(4(x1))))) | → | 4#(0(x1)) | (138) |
| 4#(1(2(0(x1)))) | → | 4#(x1) | (114) |
| 1#(0(4(0(4(x1))))) | → | 0#(x1) | (139) |
| 1#(1(1(0(0(x1))))) | → | 1#(x1) | (144) |
| 1#(1(4(5(0(x1))))) | → | 1#(3(4(0(5(x1))))) | (146) |
| 1#(1(4(5(0(x1))))) | → | 4#(0(5(x1))) | (147) |
| 1#(1(4(5(0(x1))))) | → | 0#(5(x1)) | (148) |
| 1#(1(4(5(0(x1))))) | → | 5#(x1) | (149) |
| 5#(4(1(1(0(x1))))) | → | 4#(0(1(5(x1)))) | (228) |
| 1#(4(5(2(0(x1))))) | → | 5#(4(x1)) | (160) |
| 5#(4(1(1(0(x1))))) | → | 0#(1(5(x1))) | (229) |
| 5#(4(1(1(0(x1))))) | → | 1#(5(x1)) | (230) |
| 1#(4(5(2(0(x1))))) | → | 4#(x1) | (161) |
| 4#(4(1(0(1(x1))))) | → | 4#(4(0(1(x1)))) | (181) |
| 4#(4(1(0(1(x1))))) | → | 4#(0(1(x1))) | (182) |
| 5#(4(1(1(0(x1))))) | → | 5#(x1) | (231) |
| 5#(4(5(1(0(x1))))) | → | 4#(0(x1)) | (235) |
| 4#(5(1(1(0(x1))))) | → | 1#(3(4(0(5(x1))))) | (189) |
| 4#(5(1(1(0(x1))))) | → | 4#(0(5(x1))) | (190) |
| 4#(5(1(1(0(x1))))) | → | 0#(5(x1)) | (191) |
| 4#(5(1(1(0(x1))))) | → | 5#(x1) | (192) |
| 4#(5(1(1(0(x1))))) | → | 5#(1(x1)) | (196) |
| 4#(5(1(1(0(x1))))) | → | 1#(x1) | (197) |
The dependency pairs are split into 1 component.
| 0#(1(0(0(x1)))) | → | 0#(0(1(x1))) | (52) |
| 0#(1(0(0(x1)))) | → | 0#(1(x1)) | (53) |
| 0#(1(0(0(x1)))) | → | 1#(x1) | (54) |
| 1#(5(0(1(x1)))) | → | 0#(1(3(1(3(5(x1)))))) | (95) |
| 1#(1(4(5(0(x1))))) | → | 1#(1(3(4(0(5(x1)))))) | (145) |
| 1#(4(5(0(0(x1))))) | → | 1#(x1) | (157) |
| 1#(5(0(4(5(x1))))) | → | 4#(0(5(1(5(x1))))) | (162) |
| 4#(1(0(0(x1)))) | → | 0#(1(x1)) | (105) |
| 4#(1(0(0(x1)))) | → | 1#(x1) | (106) |
| 1#(5(0(4(5(x1))))) | → | 0#(5(1(5(x1)))) | (163) |
| 1#(5(0(4(5(x1))))) | → | 5#(1(5(x1))) | (164) |
| 5#(0(0(4(x1)))) | → | 0#(x1) | (122) |
| 5#(4(1(5(x1)))) | → | 1#(5(5(x1))) | (128) |
| 1#(5(0(4(5(x1))))) | → | 1#(5(x1)) | (165) |
| 5#(0(0(4(1(x1))))) | → | 0#(1(x1)) | (210) |
| 5#(0(0(4(5(x1))))) | → | 4#(0(5(5(x1)))) | (212) |
| 4#(1(0(5(x1)))) | → | 1#(5(x1)) | (111) |
| 4#(5(0(0(x1)))) | → | 0#(4(0(5(x1)))) | (115) |
| 4#(5(0(0(x1)))) | → | 4#(0(5(x1))) | (116) |
| 4#(5(0(0(x1)))) | → | 0#(5(x1)) | (117) |
| 4#(5(0(0(x1)))) | → | 5#(x1) | (118) |
| 5#(0(0(4(5(x1))))) | → | 0#(5(5(x1))) | (213) |
| 5#(0(0(4(5(x1))))) | → | 5#(5(x1)) | (214) |
| 5#(0(4(1(0(x1))))) | → | 1#(x1) | (222) |
| 5#(1(5(0(1(x1))))) | → | 5#(1(1(x1))) | (225) |
| 5#(1(5(0(1(x1))))) | → | 1#(1(x1)) | (226) |
| 5#(4(5(1(0(x1))))) | → | 5#(5(1(3(4(0(x1)))))) | (232) |
| 5#(4(5(1(0(x1))))) | → | 5#(1(3(4(0(x1))))) | (233) |
| 5#(5(2(0(4(x1))))) | → | 0#(x1) | (239) |
| 4#(1(2(0(0(x1))))) | → | 1#(x1) | (173) |
| 4#(1(3(0(5(x1))))) | → | 4#(0(1(5(x1)))) | (174) |
| 4#(1(3(0(5(x1))))) | → | 0#(1(5(x1))) | (175) |
| 4#(1(3(0(5(x1))))) | → | 1#(5(x1)) | (176) |
| 4#(5(0(1(0(x1))))) | → | 1#(x1) | (187) |
| 4#(5(1(1(0(x1))))) | → | 1#(1(3(4(0(5(x1)))))) | (188) |
| 4#(5(1(1(0(x1))))) | → | 1#(5(1(x1))) | (195) |
| [0#(x1)] | = | 0 |
| [1(x1)] | = | 1 + 1 · x1 |
| [0(x1)] | = | 0 |
| [1#(x1)] | = | 0 |
| [5(x1)] | = | 0 |
| [3(x1)] | = | 1 |
| [4(x1)] | = | 0 |
| [4#(x1)] | = | 1 · x1 |
| [5#(x1)] | = | 0 |
| [2(x1)] | = | 0 |
| 0(1(0(0(x1)))) | → | 2(0(2(0(0(1(x1)))))) | (1) |
| 4#(1(0(0(x1)))) | → | 0#(1(x1)) | (105) |
| 4#(1(0(0(x1)))) | → | 1#(x1) | (106) |
| 4#(1(0(5(x1)))) | → | 1#(5(x1)) | (111) |
| 4#(1(2(0(0(x1))))) | → | 1#(x1) | (173) |
| 4#(1(3(0(5(x1))))) | → | 4#(0(1(5(x1)))) | (174) |
| 4#(1(3(0(5(x1))))) | → | 0#(1(5(x1))) | (175) |
| 4#(1(3(0(5(x1))))) | → | 1#(5(x1)) | (176) |
| [0#(x1)] | = | 0 |
| [1(x1)] | = | 1 + 1 · x1 |
| [0(x1)] | = | 0 |
| [1#(x1)] | = | 0 |
| [5(x1)] | = | 1 · x1 |
| [3(x1)] | = | 0 |
| [4(x1)] | = | 0 |
| [4#(x1)] | = | 1 · x1 |
| [5#(x1)] | = | 0 |
| [2(x1)] | = | 0 |
| 0(1(0(0(x1)))) | → | 2(0(2(0(0(1(x1)))))) | (1) |
| 4#(5(1(1(0(x1))))) | → | 1#(1(3(4(0(5(x1)))))) | (188) |
| 4#(5(1(1(0(x1))))) | → | 1#(5(1(x1))) | (195) |
| [0#(x1)] | = | 0 |
| [1(x1)] | = | 0 |
| [0(x1)] | = | 0 |
| [1#(x1)] | = | 0 |
| [5(x1)] | = | 1 |
| [3(x1)] | = | 0 |
| [4(x1)] | = | 1 + 1 · x1 |
| [4#(x1)] | = | 1 · x1 |
| [5#(x1)] | = | 0 |
| [2(x1)] | = | 0 |
| 0(1(0(0(x1)))) | → | 2(0(2(0(0(1(x1)))))) | (1) |
| 4#(5(0(0(x1)))) | → | 0#(4(0(5(x1)))) | (115) |
| 4#(5(0(0(x1)))) | → | 4#(0(5(x1))) | (116) |
| 4#(5(0(0(x1)))) | → | 0#(5(x1)) | (117) |
| 4#(5(0(0(x1)))) | → | 5#(x1) | (118) |
| 4#(5(0(1(0(x1))))) | → | 1#(x1) | (187) |
The dependency pairs are split into 1 component.
| 0#(1(0(0(x1)))) | → | 0#(1(x1)) | (53) |
| 0#(1(0(0(x1)))) | → | 0#(0(1(x1))) | (52) |
| 0#(1(0(0(x1)))) | → | 1#(x1) | (54) |
| 1#(5(0(1(x1)))) | → | 0#(1(3(1(3(5(x1)))))) | (95) |
| 1#(1(4(5(0(x1))))) | → | 1#(1(3(4(0(5(x1)))))) | (145) |
| 1#(4(5(0(0(x1))))) | → | 1#(x1) | (157) |
| 1#(5(0(4(5(x1))))) | → | 0#(5(1(5(x1)))) | (163) |
| 1#(5(0(4(5(x1))))) | → | 5#(1(5(x1))) | (164) |
| 5#(0(0(4(x1)))) | → | 0#(x1) | (122) |
| 5#(4(1(5(x1)))) | → | 1#(5(5(x1))) | (128) |
| 1#(5(0(4(5(x1))))) | → | 1#(5(x1)) | (165) |
| 5#(0(0(4(1(x1))))) | → | 0#(1(x1)) | (210) |
| 5#(0(0(4(5(x1))))) | → | 0#(5(5(x1))) | (213) |
| 5#(0(0(4(5(x1))))) | → | 5#(5(x1)) | (214) |
| 5#(0(4(1(0(x1))))) | → | 1#(x1) | (222) |
| 5#(1(5(0(1(x1))))) | → | 5#(1(1(x1))) | (225) |
| 5#(1(5(0(1(x1))))) | → | 1#(1(x1)) | (226) |
| 5#(4(5(1(0(x1))))) | → | 5#(5(1(3(4(0(x1)))))) | (232) |
| 5#(4(5(1(0(x1))))) | → | 5#(1(3(4(0(x1))))) | (233) |
| 5#(5(2(0(4(x1))))) | → | 0#(x1) | (239) |
| [0#(x1)] | = | 1 · x1 |
| [1(x1)] | = | 1 + 1 · x1 |
| [0(x1)] | = | 1 · x1 |
| [1#(x1)] | = | 1 · x1 |
| [5(x1)] | = | 1 + 1 · x1 |
| [3(x1)] | = | 0 |
| [4(x1)] | = | 1 + 1 · x1 |
| [5#(x1)] | = | 1 · x1 |
| [2(x1)] | = | 1 · x1 |
| 0#(1(0(0(x1)))) | → | 1#(x1) | (54) |
| 1#(5(0(1(x1)))) | → | 0#(1(3(1(3(5(x1)))))) | (95) |
| 1#(1(4(5(0(x1))))) | → | 1#(1(3(4(0(5(x1)))))) | (145) |
| 1#(4(5(0(0(x1))))) | → | 1#(x1) | (157) |
| 1#(5(0(4(5(x1))))) | → | 5#(1(5(x1))) | (164) |
| 5#(0(0(4(x1)))) | → | 0#(x1) | (122) |
| 5#(4(1(5(x1)))) | → | 1#(5(5(x1))) | (128) |
| 1#(5(0(4(5(x1))))) | → | 1#(5(x1)) | (165) |
| 5#(0(0(4(1(x1))))) | → | 0#(1(x1)) | (210) |
| 5#(0(0(4(5(x1))))) | → | 5#(5(x1)) | (214) |
| 5#(0(4(1(0(x1))))) | → | 1#(x1) | (222) |
| 5#(1(5(0(1(x1))))) | → | 5#(1(1(x1))) | (225) |
| 5#(1(5(0(1(x1))))) | → | 1#(1(x1)) | (226) |
| 5#(4(5(1(0(x1))))) | → | 5#(5(1(3(4(0(x1)))))) | (232) |
| 5#(4(5(1(0(x1))))) | → | 5#(1(3(4(0(x1))))) | (233) |
| 5#(5(2(0(4(x1))))) | → | 0#(x1) | (239) |
The dependency pairs are split into 1 component.
| 0#(1(0(0(x1)))) | → | 0#(0(1(x1))) | (52) |
| 0#(1(0(0(x1)))) | → | 0#(1(x1)) | (53) |
| [0#(x1)] | = | 1 · x1 |
| [1(x1)] | = | 1 · x1 |
| [0(x1)] | = | 1 + 1 · x1 |
| [3(x1)] | = | 0 |
| [4(x1)] | = | 1 |
| [2(x1)] | = | 1 |
| [5(x1)] | = | 1 |
| 1(0(0(1(x1)))) | → | 1(0(3(0(1(x1))))) | (2) |
| 1(0(0(4(x1)))) | → | 1(4(0(2(0(x1))))) | (3) |
| 1(0(0(4(x1)))) | → | 1(4(0(3(2(0(x1)))))) | (4) |
| 1(0(1(0(x1)))) | → | 1(3(0(0(3(1(x1)))))) | (5) |
| 1(0(1(4(x1)))) | → | 1(0(3(1(2(4(x1)))))) | (6) |
| 1(0(1(5(x1)))) | → | 1(0(2(1(5(x1))))) | (7) |
| 1(0(4(1(x1)))) | → | 1(0(3(4(1(x1))))) | (8) |
| 1(0(5(0(x1)))) | → | 1(2(5(2(0(0(x1)))))) | (9) |
| 1(2(0(4(x1)))) | → | 1(3(4(2(0(x1))))) | (10) |
| 1(3(0(4(x1)))) | → | 1(3(4(2(0(x1))))) | (11) |
| 1(4(1(0(x1)))) | → | 1(4(0(2(1(x1))))) | (12) |
| 1(4(1(0(x1)))) | → | 1(4(0(3(1(x1))))) | (13) |
| 1(4(5(0(x1)))) | → | 4(0(2(1(2(5(x1)))))) | (14) |
| 1(5(0(1(x1)))) | → | 0(1(3(1(3(5(x1)))))) | (15) |
| 1(5(0(1(x1)))) | → | 1(5(0(3(1(3(x1)))))) | (16) |
| 1(0(1(4(5(x1))))) | → | 1(3(1(5(4(0(x1)))))) | (25) |
| 1(0(4(0(4(x1))))) | → | 1(0(4(3(4(0(x1)))))) | (26) |
| 1(1(1(0(0(x1))))) | → | 1(1(0(0(3(1(x1)))))) | (27) |
| 1(1(4(5(0(x1))))) | → | 1(1(3(4(0(5(x1)))))) | (28) |
| 1(2(0(5(0(x1))))) | → | 5(2(1(0(2(0(x1)))))) | (29) |
| 1(4(5(0(0(x1))))) | → | 4(0(5(0(2(1(x1)))))) | (30) |
| 1(4(5(2(0(x1))))) | → | 0(3(1(2(5(4(x1)))))) | (31) |
| 1(5(0(4(5(x1))))) | → | 3(4(0(5(1(5(x1)))))) | (32) |
| 0(1(0(0(x1)))) | → | 2(0(2(0(0(1(x1)))))) | (1) |
| 0#(1(0(0(x1)))) | → | 0#(0(1(x1))) | (52) |
| 0#(1(0(0(x1)))) | → | 0#(1(x1)) | (53) |
There are no pairs anymore.