The rewrite relation of the following TRS is considered.
0(0(1(x1))) | → | 2(3(1(4(0(0(x1)))))) | (1) |
1(0(0(x1))) | → | 0(2(3(1(0(x1))))) | (2) |
1(0(1(x1))) | → | 0(2(1(2(3(1(x1)))))) | (3) |
1(0(1(x1))) | → | 1(0(5(2(3(1(x1)))))) | (4) |
1(0(1(x1))) | → | 2(1(0(2(3(1(x1)))))) | (5) |
4(0(0(x1))) | → | 0(2(3(4(0(x1))))) | (6) |
4(0(1(x1))) | → | 0(2(2(1(4(x1))))) | (7) |
4(0(1(x1))) | → | 0(2(3(4(1(x1))))) | (8) |
5(1(0(x1))) | → | 5(2(3(1(0(x1))))) | (9) |
5(1(0(x1))) | → | 5(2(3(3(1(0(x1)))))) | (10) |
5(1(1(x1))) | → | 2(3(1(4(1(5(x1)))))) | (11) |
5(1(1(x1))) | → | 5(3(2(3(1(1(x1)))))) | (12) |
0(0(3(0(x1)))) | → | 4(0(0(2(3(0(x1)))))) | (13) |
0(3(0(1(x1)))) | → | 0(0(2(2(1(3(x1)))))) | (14) |
1(0(3(1(x1)))) | → | 0(1(2(3(1(3(x1)))))) | (15) |
1(0(3(1(x1)))) | → | 0(4(1(2(3(1(x1)))))) | (16) |
1(2(5(1(x1)))) | → | 5(4(2(3(1(1(x1)))))) | (17) |
4(0(1(1(x1)))) | → | 0(2(4(1(1(x1))))) | (18) |
4(0(1(5(x1)))) | → | 5(0(2(3(1(4(x1)))))) | (19) |
4(0(1(5(x1)))) | → | 5(4(1(3(4(0(x1)))))) | (20) |
4(0(3(0(x1)))) | → | 0(2(3(0(4(5(x1)))))) | (21) |
4(0(3(5(x1)))) | → | 0(2(3(4(1(5(x1)))))) | (22) |
4(2(5(0(x1)))) | → | 4(5(2(3(0(x1))))) | (23) |
4(2(5(0(x1)))) | → | 4(0(2(3(5(4(x1)))))) | (24) |
4(3(0(0(x1)))) | → | 0(2(3(4(3(0(x1)))))) | (25) |
4(3(0(1(x1)))) | → | 1(4(0(2(3(x1))))) | (26) |
4(3(0(1(x1)))) | → | 3(0(2(2(4(1(x1)))))) | (27) |
5(1(1(1(x1)))) | → | 2(2(1(1(5(1(x1)))))) | (28) |
0(0(1(2(5(x1))))) | → | 2(3(1(5(0(0(x1)))))) | (29) |
0(1(3(0(0(x1))))) | → | 2(3(1(0(0(0(x1)))))) | (30) |
0(2(5(3(1(x1))))) | → | 2(0(5(4(1(3(x1)))))) | (31) |
0(2(5(5(1(x1))))) | → | 0(2(1(5(4(5(x1)))))) | (32) |
0(3(0(5(1(x1))))) | → | 2(1(5(3(0(0(x1)))))) | (33) |
0(4(3(5(1(x1))))) | → | 2(4(3(1(0(5(x1)))))) | (34) |
0(5(1(1(5(x1))))) | → | 0(1(2(1(5(5(x1)))))) | (35) |
0(5(1(3(0(x1))))) | → | 2(1(3(5(0(0(x1)))))) | (36) |
1(0(4(1(5(x1))))) | → | 4(1(2(1(5(0(x1)))))) | (37) |
1(2(4(5(1(x1))))) | → | 1(4(1(5(2(3(x1)))))) | (38) |
1(2(5(3(0(x1))))) | → | 1(4(2(3(5(0(x1)))))) | (39) |
1(3(0(4(0(x1))))) | → | 0(2(3(1(4(0(x1)))))) | (40) |
4(0(3(1(5(x1))))) | → | 4(4(3(5(0(1(x1)))))) | (41) |
4(2(5(0(0(x1))))) | → | 0(5(2(0(4(4(x1)))))) | (42) |
4(2(5(0(0(x1))))) | → | 5(2(3(4(0(0(x1)))))) | (43) |
4(2(5(3(0(x1))))) | → | 4(0(2(5(2(3(x1)))))) | (44) |
4(2(5(3(0(x1))))) | → | 5(2(4(3(1(0(x1)))))) | (45) |
4(2(5(3(1(x1))))) | → | 2(3(1(5(4(2(x1)))))) | (46) |
4(3(0(0(1(x1))))) | → | 2(4(3(1(0(0(x1)))))) | (47) |
4(3(2(5(0(x1))))) | → | 0(4(2(3(4(5(x1)))))) | (48) |
4(5(1(3(1(x1))))) | → | 4(1(3(5(4(1(x1)))))) | (49) |
5(1(4(3(1(x1))))) | → | 5(3(2(4(1(1(x1)))))) | (50) |
1(0(0(x1))) | → | 0(0(4(1(3(2(x1)))))) | (51) |
0(0(1(x1))) | → | 0(1(3(2(0(x1))))) | (52) |
1(0(1(x1))) | → | 1(3(2(1(2(0(x1)))))) | (53) |
1(0(1(x1))) | → | 1(3(2(5(0(1(x1)))))) | (54) |
1(0(1(x1))) | → | 1(3(2(0(1(2(x1)))))) | (55) |
0(0(4(x1))) | → | 0(4(3(2(0(x1))))) | (56) |
1(0(4(x1))) | → | 4(1(2(2(0(x1))))) | (57) |
1(0(4(x1))) | → | 1(4(3(2(0(x1))))) | (58) |
0(1(5(x1))) | → | 0(1(3(2(5(x1))))) | (59) |
0(1(5(x1))) | → | 0(1(3(3(2(5(x1)))))) | (60) |
1(1(5(x1))) | → | 5(1(4(1(3(2(x1)))))) | (61) |
1(1(5(x1))) | → | 1(1(3(2(3(5(x1)))))) | (62) |
0(3(0(0(x1)))) | → | 0(3(2(0(0(4(x1)))))) | (63) |
1(0(3(0(x1)))) | → | 3(1(2(2(0(0(x1)))))) | (64) |
1(3(0(1(x1)))) | → | 3(1(3(2(1(0(x1)))))) | (65) |
1(3(0(1(x1)))) | → | 1(3(2(1(4(0(x1)))))) | (66) |
1(5(2(1(x1)))) | → | 1(1(3(2(4(5(x1)))))) | (67) |
1(1(0(4(x1)))) | → | 1(1(4(2(0(x1))))) | (68) |
5(1(0(4(x1)))) | → | 4(1(3(2(0(5(x1)))))) | (69) |
5(1(0(4(x1)))) | → | 0(4(3(1(4(5(x1)))))) | (70) |
0(3(0(4(x1)))) | → | 5(4(0(3(2(0(x1)))))) | (71) |
5(3(0(4(x1)))) | → | 5(1(4(3(2(0(x1)))))) | (72) |
0(5(2(4(x1)))) | → | 0(3(2(5(4(x1))))) | (73) |
0(5(2(4(x1)))) | → | 4(5(3(2(0(4(x1)))))) | (74) |
0(0(3(4(x1)))) | → | 0(3(4(3(2(0(x1)))))) | (75) |
1(0(3(4(x1)))) | → | 3(2(0(4(1(x1))))) | (76) |
1(0(3(4(x1)))) | → | 1(4(2(2(0(3(x1)))))) | (77) |
1(1(1(5(x1)))) | → | 1(5(1(1(2(2(x1)))))) | (78) |
5(2(1(0(0(x1))))) | → | 0(0(5(1(3(2(x1)))))) | (79) |
0(0(3(1(0(x1))))) | → | 0(0(0(1(3(2(x1)))))) | (80) |
1(3(5(2(0(x1))))) | → | 3(1(4(5(0(2(x1)))))) | (81) |
1(5(5(2(0(x1))))) | → | 5(4(5(1(2(0(x1)))))) | (82) |
1(5(0(3(0(x1))))) | → | 0(0(3(5(1(2(x1)))))) | (83) |
1(5(3(4(0(x1))))) | → | 5(0(1(3(4(2(x1)))))) | (84) |
5(1(1(5(0(x1))))) | → | 5(5(1(2(1(0(x1)))))) | (85) |
0(3(1(5(0(x1))))) | → | 0(0(5(3(1(2(x1)))))) | (86) |
5(1(4(0(1(x1))))) | → | 0(5(1(2(1(4(x1)))))) | (87) |
1(5(4(2(1(x1))))) | → | 3(2(5(1(4(1(x1)))))) | (88) |
0(3(5(2(1(x1))))) | → | 0(5(3(2(4(1(x1)))))) | (89) |
0(4(0(3(1(x1))))) | → | 0(4(1(3(2(0(x1)))))) | (90) |
5(1(3(0(4(x1))))) | → | 1(0(5(3(4(4(x1)))))) | (91) |
0(0(5(2(4(x1))))) | → | 4(4(0(2(5(0(x1)))))) | (92) |
0(0(5(2(4(x1))))) | → | 0(0(4(3(2(5(x1)))))) | (93) |
0(3(5(2(4(x1))))) | → | 3(2(5(2(0(4(x1)))))) | (94) |
0(3(5(2(4(x1))))) | → | 0(1(3(4(2(5(x1)))))) | (95) |
1(3(5(2(4(x1))))) | → | 2(4(5(1(3(2(x1)))))) | (96) |
1(0(0(3(4(x1))))) | → | 0(0(1(3(4(2(x1)))))) | (97) |
0(5(2(3(4(x1))))) | → | 5(4(3(2(4(0(x1)))))) | (98) |
1(3(1(5(4(x1))))) | → | 1(4(5(3(1(4(x1)))))) | (99) |
1(3(4(1(5(x1))))) | → | 1(1(4(2(3(5(x1)))))) | (100) |
There are 135 ruless (increase limit for explicit display).
The dependency pairs are split into 1 component.
0#(0(4(x1))) | → | 0#(x1) | (116) |
0#(0(1(x1))) | → | 0#(x1) | (106) |
0#(3(0(0(x1)))) | → | 0#(0(4(x1))) | (130) |
0#(3(0(0(x1)))) | → | 0#(4(x1)) | (131) |
0#(4(0(3(1(x1))))) | → | 0#(x1) | (209) |
0#(3(0(4(x1)))) | → | 0#(x1) | (152) |
0#(5(2(4(x1)))) | → | 0#(4(x1)) | (159) |
0#(0(3(4(x1)))) | → | 0#(x1) | (161) |
0#(0(3(1(0(x1))))) | → | 0#(0(0(1(3(2(x1)))))) | (174) |
0#(0(3(1(0(x1))))) | → | 0#(0(1(3(2(x1))))) | (175) |
0#(0(5(2(4(x1))))) | → | 5#(0(x1)) | (214) |
5#(1(0(4(x1)))) | → | 0#(5(x1)) | (146) |
0#(0(5(2(4(x1))))) | → | 0#(x1) | (215) |
0#(0(5(2(4(x1))))) | → | 0#(0(4(3(2(5(x1)))))) | (216) |
0#(0(5(2(4(x1))))) | → | 5#(x1) | (218) |
5#(1(0(4(x1)))) | → | 5#(x1) | (147) |
5#(3(0(4(x1)))) | → | 0#(x1) | (155) |
0#(3(5(2(4(x1))))) | → | 0#(4(x1)) | (220) |
0#(3(5(2(4(x1))))) | → | 5#(x1) | (223) |
5#(1(1(5(0(x1))))) | → | 1#(0(x1)) | (194) |
1#(0(0(x1))) | → | 0#(0(4(1(3(2(x1)))))) | (101) |
1#(0(1(x1))) | → | 0#(x1) | (109) |
0#(5(2(3(4(x1))))) | → | 0#(x1) | (230) |
1#(0(1(x1))) | → | 5#(0(1(x1))) | (111) |
1#(0(4(x1))) | → | 0#(x1) | (118) |
1#(0(3(0(x1)))) | → | 0#(0(x1)) | (133) |
1#(3(0(1(x1)))) | → | 1#(0(x1)) | (135) |
1#(3(0(1(x1)))) | → | 0#(x1) | (136) |
1#(5(2(1(x1)))) | → | 5#(x1) | (141) |
1#(1(0(4(x1)))) | → | 0#(x1) | (144) |
1#(0(3(4(x1)))) | → | 0#(4(1(x1))) | (162) |
1#(0(3(4(x1)))) | → | 1#(x1) | (163) |
1#(0(3(4(x1)))) | → | 0#(3(x1)) | (165) |
1#(0(0(3(4(x1))))) | → | 0#(0(1(3(4(2(x1)))))) | (226) |
[0#(x1)] | = | 1 · x1 |
[0(x1)] | = | 1 + 1 · x1 |
[4(x1)] | = | 1 · x1 |
[1(x1)] | = | 1 · x1 |
[3(x1)] | = | 1 · x1 |
[5(x1)] | = | 1 · x1 |
[2(x1)] | = | 1 · x1 |
[5#(x1)] | = | 1 · x1 |
[1#(x1)] | = | 1 · x1 |
0#(0(4(x1))) | → | 0#(x1) | (116) |
0#(0(1(x1))) | → | 0#(x1) | (106) |
0#(3(0(0(x1)))) | → | 0#(0(4(x1))) | (130) |
0#(3(0(0(x1)))) | → | 0#(4(x1)) | (131) |
0#(4(0(3(1(x1))))) | → | 0#(x1) | (209) |
0#(3(0(4(x1)))) | → | 0#(x1) | (152) |
0#(0(3(4(x1)))) | → | 0#(x1) | (161) |
0#(0(3(1(0(x1))))) | → | 0#(0(1(3(2(x1))))) | (175) |
5#(1(0(4(x1)))) | → | 0#(5(x1)) | (146) |
0#(0(5(2(4(x1))))) | → | 0#(x1) | (215) |
0#(0(5(2(4(x1))))) | → | 5#(x1) | (218) |
5#(1(0(4(x1)))) | → | 5#(x1) | (147) |
5#(3(0(4(x1)))) | → | 0#(x1) | (155) |
1#(0(0(x1))) | → | 0#(0(4(1(3(2(x1)))))) | (101) |
1#(0(1(x1))) | → | 0#(x1) | (109) |
1#(0(4(x1))) | → | 0#(x1) | (118) |
1#(0(3(0(x1)))) | → | 0#(0(x1)) | (133) |
1#(3(0(1(x1)))) | → | 0#(x1) | (136) |
1#(1(0(4(x1)))) | → | 0#(x1) | (144) |
1#(0(3(4(x1)))) | → | 0#(4(1(x1))) | (162) |
1#(0(3(4(x1)))) | → | 1#(x1) | (163) |
1#(0(3(4(x1)))) | → | 0#(3(x1)) | (165) |
1#(0(0(3(4(x1))))) | → | 0#(0(1(3(4(2(x1)))))) | (226) |
The dependency pairs are split into 2 components.
0#(5(2(3(4(x1))))) | → | 0#(x1) | (230) |
0#(0(3(1(0(x1))))) | → | 0#(0(0(1(3(2(x1)))))) | (174) |
[0#(x1)] | = | 1 · x1 |
[5(x1)] | = | 1 · x1 |
[2(x1)] | = | 1 + 1 · x1 |
[3(x1)] | = | 1 · x1 |
[4(x1)] | = | 1 · x1 |
[0(x1)] | = | 0 |
[1(x1)] | = | 0 |
0(0(1(x1))) | → | 0(1(3(2(0(x1))))) | (52) |
0#(5(2(3(4(x1))))) | → | 0#(x1) | (230) |
[0#(x1)] | = | 1 · x1 |
[0(x1)] | = | 1 · x1 |
[3(x1)] | = | 1 |
[1(x1)] | = | 0 |
[2(x1)] | = | 0 |
[4(x1)] | = | 0 |
[5(x1)] | = | 1 |
0(0(1(x1))) | → | 0(1(3(2(0(x1))))) | (52) |
0#(0(3(1(0(x1))))) | → | 0#(0(0(1(3(2(x1)))))) | (174) |
There are no pairs anymore.
1#(0(1(x1))) | → | 5#(0(1(x1))) | (111) |
5#(1(1(5(0(x1))))) | → | 1#(0(x1)) | (194) |
1#(3(0(1(x1)))) | → | 1#(0(x1)) | (135) |
1#(5(2(1(x1)))) | → | 5#(x1) | (141) |
[1#(x1)] | = | 1 + 1 · x1 |
[0(x1)] | = | 0 |
[1(x1)] | = | 0 |
[5#(x1)] | = | 1 |
[5(x1)] | = | 1 · x1 |
[3(x1)] | = | 0 |
[2(x1)] | = | 1 |
[4(x1)] | = | 0 |
0(0(1(x1))) | → | 0(1(3(2(0(x1))))) | (52) |
0(0(4(x1))) | → | 0(4(3(2(0(x1))))) | (56) |
0(1(5(x1))) | → | 0(1(3(2(5(x1))))) | (59) |
0(1(5(x1))) | → | 0(1(3(3(2(5(x1)))))) | (60) |
0(3(0(0(x1)))) | → | 0(3(2(0(0(4(x1)))))) | (63) |
0(3(0(4(x1)))) | → | 5(4(0(3(2(0(x1)))))) | (71) |
0(5(2(4(x1)))) | → | 0(3(2(5(4(x1))))) | (73) |
0(5(2(4(x1)))) | → | 4(5(3(2(0(4(x1)))))) | (74) |
0(0(3(4(x1)))) | → | 0(3(4(3(2(0(x1)))))) | (75) |
0(0(3(1(0(x1))))) | → | 0(0(0(1(3(2(x1)))))) | (80) |
0(3(1(5(0(x1))))) | → | 0(0(5(3(1(2(x1)))))) | (86) |
0(3(5(2(1(x1))))) | → | 0(5(3(2(4(1(x1)))))) | (89) |
0(4(0(3(1(x1))))) | → | 0(4(1(3(2(0(x1)))))) | (90) |
0(0(5(2(4(x1))))) | → | 4(4(0(2(5(0(x1)))))) | (92) |
0(0(5(2(4(x1))))) | → | 0(0(4(3(2(5(x1)))))) | (93) |
0(3(5(2(4(x1))))) | → | 3(2(5(2(0(4(x1)))))) | (94) |
0(3(5(2(4(x1))))) | → | 0(1(3(4(2(5(x1)))))) | (95) |
0(5(2(3(4(x1))))) | → | 5(4(3(2(4(0(x1)))))) | (98) |
1#(5(2(1(x1)))) | → | 5#(x1) | (141) |
[1#(x1)] | = | 1 · x1 |
[0(x1)] | = | 1 |
[1(x1)] | = | 1 + 1 · x1 |
[5#(x1)] | = | 1 · x1 |
[5(x1)] | = | 0 |
[3(x1)] | = | 1 + 1 · x1 |
[4(x1)] | = | 0 |
[2(x1)] | = | 0 |
0(0(1(x1))) | → | 0(1(3(2(0(x1))))) | (52) |
0(0(4(x1))) | → | 0(4(3(2(0(x1))))) | (56) |
0(1(5(x1))) | → | 0(1(3(2(5(x1))))) | (59) |
0(1(5(x1))) | → | 0(1(3(3(2(5(x1)))))) | (60) |
0(3(0(0(x1)))) | → | 0(3(2(0(0(4(x1)))))) | (63) |
0(3(0(4(x1)))) | → | 5(4(0(3(2(0(x1)))))) | (71) |
0(5(2(4(x1)))) | → | 0(3(2(5(4(x1))))) | (73) |
0(5(2(4(x1)))) | → | 4(5(3(2(0(4(x1)))))) | (74) |
0(0(3(4(x1)))) | → | 0(3(4(3(2(0(x1)))))) | (75) |
0(0(3(1(0(x1))))) | → | 0(0(0(1(3(2(x1)))))) | (80) |
0(3(1(5(0(x1))))) | → | 0(0(5(3(1(2(x1)))))) | (86) |
0(3(5(2(1(x1))))) | → | 0(5(3(2(4(1(x1)))))) | (89) |
0(4(0(3(1(x1))))) | → | 0(4(1(3(2(0(x1)))))) | (90) |
0(0(5(2(4(x1))))) | → | 4(4(0(2(5(0(x1)))))) | (92) |
0(0(5(2(4(x1))))) | → | 0(0(4(3(2(5(x1)))))) | (93) |
0(3(5(2(4(x1))))) | → | 3(2(5(2(0(4(x1)))))) | (94) |
0(3(5(2(4(x1))))) | → | 0(1(3(4(2(5(x1)))))) | (95) |
0(5(2(3(4(x1))))) | → | 5(4(3(2(4(0(x1)))))) | (98) |
5#(1(1(5(0(x1))))) | → | 1#(0(x1)) | (194) |
1#(3(0(1(x1)))) | → | 1#(0(x1)) | (135) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
1#(0(1(x1))) | → | 5#(0(1(x1))) | (111) |
1 | ≥ | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.