The rewrite relation of the following TRS is considered.
0(x1) | → | 1(x1) | (1) |
0(0(x1)) | → | 0(x1) | (2) |
3(4(5(x1))) | → | 4(3(5(x1))) | (3) |
2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | → | 0(0(1(0(1(1(0(1(1(1(1(1(1(1(1(0(0(0(0(0(0(1(1(1(1(1(0(0(1(1(1(1(0(0(1(1(1(1(0(1(1(0(0(0(0(0(1(1(0(0(0(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | (4) |
1(1(1(1(1(1(0(1(1(1(1(1(1(0(0(0(1(0(1(1(1(0(1(1(1(0(1(0(1(0(1(1(0(1(0(0(1(1(0(1(0(1(0(1(0(0(0(0(0(0(0(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | → | 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | (5) |
{0(☐), 1(☐), 3(☐), 4(☐), 5(☐), 2(☐)}
We obtain the transformed TRS0(0(x1)) | → | 0(x1) | (2) |
0(0(x1)) | → | 0(1(x1)) | (6) |
1(0(x1)) | → | 1(1(x1)) | (7) |
3(0(x1)) | → | 3(1(x1)) | (8) |
4(0(x1)) | → | 4(1(x1)) | (9) |
5(0(x1)) | → | 5(1(x1)) | (10) |
2(0(x1)) | → | 2(1(x1)) | (11) |
0(3(4(5(x1)))) | → | 0(4(3(5(x1)))) | (12) |
1(3(4(5(x1)))) | → | 1(4(3(5(x1)))) | (13) |
3(3(4(5(x1)))) | → | 3(4(3(5(x1)))) | (14) |
4(3(4(5(x1)))) | → | 4(4(3(5(x1)))) | (15) |
5(3(4(5(x1)))) | → | 5(4(3(5(x1)))) | (16) |
2(3(4(5(x1)))) | → | 2(4(3(5(x1)))) | (17) |
0(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | → | 0(0(0(1(0(1(1(0(1(1(1(1(1(1(1(1(0(0(0(0(0(0(1(1(1(1(1(0(0(1(1(1(1(0(0(1(1(1(1(0(1(1(0(0(0(0(0(1(1(0(0(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | (18) |
1(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | → | 1(0(0(1(0(1(1(0(1(1(1(1(1(1(1(1(0(0(0(0(0(0(1(1(1(1(1(0(0(1(1(1(1(0(0(1(1(1(1(0(1(1(0(0(0(0(0(1(1(0(0(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | (19) |
3(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | → | 3(0(0(1(0(1(1(0(1(1(1(1(1(1(1(1(0(0(0(0(0(0(1(1(1(1(1(0(0(1(1(1(1(0(0(1(1(1(1(0(1(1(0(0(0(0(0(1(1(0(0(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | (20) |
4(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | → | 4(0(0(1(0(1(1(0(1(1(1(1(1(1(1(1(0(0(0(0(0(0(1(1(1(1(1(0(0(1(1(1(1(0(0(1(1(1(1(0(1(1(0(0(0(0(0(1(1(0(0(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | (21) |
5(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | → | 5(0(0(1(0(1(1(0(1(1(1(1(1(1(1(1(0(0(0(0(0(0(1(1(1(1(1(0(0(1(1(1(1(0(0(1(1(1(1(0(1(1(0(0(0(0(0(1(1(0(0(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | (22) |
2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | → | 2(0(0(1(0(1(1(0(1(1(1(1(1(1(1(1(0(0(0(0(0(0(1(1(1(1(1(0(0(1(1(1(1(0(0(1(1(1(1(0(1(1(0(0(0(0(0(1(1(0(0(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | (23) |
0(1(1(1(1(1(1(0(1(1(1(1(1(1(0(0(0(1(0(1(1(1(0(1(1(1(0(1(0(1(0(1(1(0(1(0(0(1(1(0(1(0(1(0(1(0(0(0(0(0(0(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | → | 0(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | (24) |
1(1(1(1(1(1(1(0(1(1(1(1(1(1(0(0(0(1(0(1(1(1(0(1(1(1(0(1(0(1(0(1(1(0(1(0(0(1(1(0(1(0(1(0(1(0(0(0(0(0(0(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | → | 1(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | (25) |
3(1(1(1(1(1(1(0(1(1(1(1(1(1(0(0(0(1(0(1(1(1(0(1(1(1(0(1(0(1(0(1(1(0(1(0(0(1(1(0(1(0(1(0(1(0(0(0(0(0(0(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | → | 3(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | (26) |
4(1(1(1(1(1(1(0(1(1(1(1(1(1(0(0(0(1(0(1(1(1(0(1(1(1(0(1(0(1(0(1(1(0(1(0(0(1(1(0(1(0(1(0(1(0(0(0(0(0(0(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | → | 4(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | (27) |
5(1(1(1(1(1(1(0(1(1(1(1(1(1(0(0(0(1(0(1(1(1(0(1(1(1(0(1(0(1(0(1(1(0(1(0(0(1(1(0(1(0(1(0(1(0(0(0(0(0(0(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | → | 5(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | (28) |
2(1(1(1(1(1(1(0(1(1(1(1(1(1(0(0(0(1(0(1(1(1(0(1(1(1(0(1(0(1(0(1(1(0(1(0(0(1(1(0(1(0(1(0(1(0(0(0(0(0(0(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | → | 2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(2(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | (29) |
Root-labeling is applied.
We obtain the labeled TRSThere are 150 ruless (increase limit for explicit display).
[00(x1)] | = | 1 · x1 + 6 |
[01(x1)] | = | 1 · x1 + 1 |
[03(x1)] | = | 1 · x1 + 1 |
[04(x1)] | = | 1 · x1 |
[05(x1)] | = | 1 · x1 + 4 |
[02(x1)] | = | 1 · x1 + 6 |
[10(x1)] | = | 1 · x1 + 2 |
[11(x1)] | = | 1 · x1 + 1 |
[13(x1)] | = | 1 · x1 |
[14(x1)] | = | 1 · x1 |
[15(x1)] | = | 1 · x1 + 3 |
[12(x1)] | = | 1 · x1 + 5 |
[30(x1)] | = | 1 · x1 + 1 |
[31(x1)] | = | 1 · x1 |
[40(x1)] | = | 1 · x1 + 2 |
[41(x1)] | = | 1 · x1 |
[50(x1)] | = | 1 · x1 |
[51(x1)] | = | 1 · x1 |
[20(x1)] | = | 1 · x1 + 1 |
[21(x1)] | = | 1 · x1 |
[34(x1)] | = | 1 · x1 + 1 |
[45(x1)] | = | 1 · x1 |
[43(x1)] | = | 1 · x1 |
[35(x1)] | = | 1 · x1 |
[53(x1)] | = | 1 · x1 |
[54(x1)] | = | 1 · x1 + 1 |
[55(x1)] | = | 1 · x1 |
[52(x1)] | = | 1 · x1 + 4 |
[33(x1)] | = | 1 · x1 + 1 |
[44(x1)] | = | 1 · x1 + 1 |
[23(x1)] | = | 1 · x1 |
[24(x1)] | = | 1 · x1 |
[22(x1)] | = | 1 · x1 + 4 |
[25(x1)] | = | 1 · x1 |
[32(x1)] | = | 1 · x1 + 5 |
[42(x1)] | = | 1 · x1 + 3 |
There are 132 ruless (increase limit for explicit display).
[50(x1)] | = | 1 · x1 + 1 |
[01(x1)] | = | 1 · x1 |
[51(x1)] | = | 1 · x1 |
[11(x1)] | = | 1 · x1 |
[04(x1)] | = | 1 · x1 + 1 |
[14(x1)] | = | 1 · x1 + 1 |
[43(x1)] | = | 1 · x1 |
[34(x1)] | = | 1 · x1 |
[45(x1)] | = | 1 · x1 |
[44(x1)] | = | 1 · x1 |
[35(x1)] | = | 1 · x1 |
[53(x1)] | = | 1 · x1 |
[54(x1)] | = | 1 · x1 |
[55(x1)] | = | 1 · x1 |
[52(x1)] | = | 1 · x1 |
[10(x1)] | = | 1 · x1 |
[00(x1)] | = | 1 · x1 |
[13(x1)] | = | 1 · x1 + 1 |
[02(x1)] | = | 1 · x1 |
[22(x1)] | = | 1 · x1 |
[23(x1)] | = | 1 · x1 |
[24(x1)] | = | 1 · x1 |
[31(x1)] | = | 1 · x1 |
[32(x1)] | = | 1 · x1 |
50(01(x1)) | → | 51(11(x1)) | (61) |
50(04(x1)) | → | 51(14(x1)) | (63) |
01(11(11(11(11(11(10(01(11(11(11(11(11(10(00(00(01(10(01(11(11(10(01(11(11(10(01(10(01(10(01(11(10(01(10(00(01(11(10(01(10(01(10(01(10(00(00(00(00(00(00(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | → | 02(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | (146) |
01(11(11(11(11(11(10(01(11(11(11(11(11(10(00(00(01(10(01(11(11(10(01(11(11(10(01(10(01(10(01(11(10(01(10(00(01(11(10(01(10(01(10(01(10(00(00(00(00(00(00(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | → | 02(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | (147) |
31(11(11(11(11(11(10(01(11(11(11(11(11(10(00(00(01(10(01(11(11(10(01(11(11(10(01(10(01(10(01(11(10(01(10(00(01(11(10(01(10(01(10(01(10(00(00(00(00(00(00(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | → | 32(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | (158) |
31(11(11(11(11(11(10(01(11(11(11(11(11(10(00(00(01(10(01(11(11(10(01(11(11(10(01(10(01(10(01(11(10(01(10(00(01(11(10(01(10(01(10(01(10(00(00(00(00(00(00(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | → | 32(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(22(...display limit reached...))))))))))))))))))))))))))))))))))))))))))))))))))) | (159) |
[43(x1)] | = | 1 · x1 + 1 |
[34(x1)] | = | 1 · x1 |
[45(x1)] | = | 1 · x1 + 1 |
[50(x1)] | = | 1 · x1 |
[44(x1)] | = | 1 · x1 |
[35(x1)] | = | 1 · x1 |
[51(x1)] | = | 1 · x1 |
[53(x1)] | = | 1 · x1 |
[54(x1)] | = | 1 · x1 |
[55(x1)] | = | 1 · x1 |
[52(x1)] | = | 1 · x1 |
43(34(45(50(x1)))) | → | 44(43(35(50(x1)))) | (90) |
43(34(45(51(x1)))) | → | 44(43(35(51(x1)))) | (91) |
43(34(45(53(x1)))) | → | 44(43(35(53(x1)))) | (92) |
43(34(45(54(x1)))) | → | 44(43(35(54(x1)))) | (93) |
43(34(45(55(x1)))) | → | 44(43(35(55(x1)))) | (94) |
43(34(45(52(x1)))) | → | 44(43(35(52(x1)))) | (95) |
[53(x1)] | = | 1 · x1 |
[34(x1)] | = | 1 · x1 + 1 |
[45(x1)] | = | 1 · x1 |
[50(x1)] | = | 1 · x1 |
[54(x1)] | = | 1 · x1 |
[43(x1)] | = | 1 · x1 |
[35(x1)] | = | 1 · x1 |
[51(x1)] | = | 1 · x1 |
[55(x1)] | = | 1 · x1 |
[52(x1)] | = | 1 · x1 |
53(34(45(50(x1)))) | → | 54(43(35(50(x1)))) | (96) |
53(34(45(51(x1)))) | → | 54(43(35(51(x1)))) | (97) |
53(34(45(53(x1)))) | → | 54(43(35(53(x1)))) | (98) |
53(34(45(54(x1)))) | → | 54(43(35(54(x1)))) | (99) |
53(34(45(55(x1)))) | → | 54(43(35(55(x1)))) | (100) |
53(34(45(52(x1)))) | → | 54(43(35(52(x1)))) | (101) |
There are no rules in the TRS. Hence, it is terminating.