The rewrite relation of the following TRS is considered.
0(1(2(3(4(x1))))) | → | 0(2(1(3(4(x1))))) | (1) |
0(5(1(2(4(3(x1)))))) | → | 0(5(2(1(4(3(x1)))))) | (2) |
0(5(2(4(1(3(x1)))))) | → | 0(1(5(2(4(3(x1)))))) | (3) |
0(5(3(1(2(4(x1)))))) | → | 0(1(5(3(2(4(x1)))))) | (4) |
0(5(4(1(3(2(x1)))))) | → | 0(5(4(3(1(2(x1)))))) | (5) |
4(3(2(1(0(x1))))) | → | 4(3(1(2(0(x1))))) | (6) |
3(4(2(1(5(0(x1)))))) | → | 3(4(1(2(5(0(x1)))))) | (7) |
3(1(4(2(5(0(x1)))))) | → | 3(4(2(5(1(0(x1)))))) | (8) |
4(2(1(3(5(0(x1)))))) | → | 4(2(3(5(1(0(x1)))))) | (9) |
2(3(1(4(5(0(x1)))))) | → | 2(1(3(4(5(0(x1)))))) | (10) |
final states:
{0, 1, 2, 3, 4, 5}
transitions:
40(0) | → | 0 |
40(1) | → | 0 |
40(2) | → | 0 |
40(3) | → | 0 |
40(4) | → | 0 |
40(5) | → | 0 |
30(0) | → | 1 |
30(1) | → | 1 |
30(2) | → | 1 |
30(3) | → | 1 |
30(4) | → | 1 |
30(5) | → | 1 |
20(0) | → | 2 |
20(1) | → | 2 |
20(2) | → | 2 |
20(3) | → | 2 |
20(4) | → | 2 |
20(5) | → | 2 |
10(0) | → | 3 |
10(1) | → | 3 |
10(2) | → | 3 |
10(3) | → | 3 |
10(4) | → | 3 |
10(5) | → | 3 |
00(0) | → | 4 |
00(1) | → | 4 |
00(2) | → | 4 |
00(3) | → | 4 |
00(4) | → | 4 |
00(5) | → | 4 |
50(0) | → | 5 |
50(1) | → | 5 |
50(2) | → | 5 |
50(3) | → | 5 |
50(4) | → | 5 |
50(5) | → | 5 |
01(0) | → | 9 |
21(9) | → | 8 |
11(8) | → | 7 |
31(7) | → | 6 |
41(6) | → | 0 |
01(1) | → | 9 |
01(2) | → | 9 |
01(3) | → | 9 |
01(4) | → | 9 |
01(5) | → | 9 |
51(9) | → | 13 |
21(13) | → | 12 |
11(12) | → | 11 |
41(11) | → | 10 |
31(10) | → | 1 |
11(9) | → | 15 |
51(15) | → | 14 |
21(14) | → | 11 |
31(14) | → | 16 |
21(16) | → | 6 |
41(13) | → | 19 |
31(19) | → | 18 |
11(18) | → | 17 |
21(17) | → | 2 |