The rewrite relation of the following TRS is considered.
| 0(4(x1)) | → | 0(1(4(2(3(3(x1)))))) | (1) |
| 0(4(x1)) | → | 0(2(1(4(3(4(x1)))))) | (2) |
| 0(0(4(x1))) | → | 1(1(5(2(3(4(x1)))))) | (3) |
| 0(1(1(x1))) | → | 0(2(2(1(1(1(x1)))))) | (4) |
| 0(1(3(x1))) | → | 0(2(4(3(4(4(x1)))))) | (5) |
| 0(2(4(x1))) | → | 1(5(4(3(4(4(x1)))))) | (6) |
| 0(4(0(x1))) | → | 0(1(2(1(0(3(x1)))))) | (7) |
| 1(2(3(x1))) | → | 5(1(4(1(4(4(x1)))))) | (8) |
| 1(3(3(x1))) | → | 0(2(1(1(0(5(x1)))))) | (9) |
| 1(3(3(x1))) | → | 5(4(0(3(2(3(x1)))))) | (10) |
| 1(3(5(x1))) | → | 1(1(4(3(3(2(x1)))))) | (11) |
| 2(0(0(x1))) | → | 2(4(3(4(4(4(x1)))))) | (12) |
| 2(0(1(x1))) | → | 2(1(5(1(0(1(x1)))))) | (13) |
| 2(0(1(x1))) | → | 2(4(3(5(2(3(x1)))))) | (14) |
| 2(0(4(x1))) | → | 2(0(2(1(4(3(x1)))))) | (15) |
| 2(0(4(x1))) | → | 2(4(1(4(3(1(x1)))))) | (16) |
| 3(0(1(x1))) | → | 3(1(4(3(4(1(x1)))))) | (17) |
| 3(0(5(x1))) | → | 3(1(0(2(3(2(x1)))))) | (18) |
| 4(0(0(x1))) | → | 2(5(2(1(1(1(x1)))))) | (19) |
| 4(0(5(x1))) | → | 4(1(4(5(1(4(x1)))))) | (20) |
| 4(0(5(x1))) | → | 4(2(1(4(3(5(x1)))))) | (21) |
| 5(0(2(x1))) | → | 1(5(2(1(0(2(x1)))))) | (22) |
| 5(0(4(x1))) | → | 1(0(3(2(4(4(x1)))))) | (23) |
| 5(0(4(x1))) | → | 1(5(1(0(3(4(x1)))))) | (24) |
{0(☐), 4(☐), 1(☐), 2(☐), 3(☐), 5(☐)}
We obtain the transformed TRS| 0(4(x1)) | → | 0(1(4(2(3(3(x1)))))) | (1) |
| 0(4(x1)) | → | 0(2(1(4(3(4(x1)))))) | (2) |
| 0(1(1(x1))) | → | 0(2(2(1(1(1(x1)))))) | (4) |
| 0(1(3(x1))) | → | 0(2(4(3(4(4(x1)))))) | (5) |
| 0(4(0(x1))) | → | 0(1(2(1(0(3(x1)))))) | (7) |
| 1(3(5(x1))) | → | 1(1(4(3(3(2(x1)))))) | (11) |
| 2(0(0(x1))) | → | 2(4(3(4(4(4(x1)))))) | (12) |
| 2(0(1(x1))) | → | 2(1(5(1(0(1(x1)))))) | (13) |
| 2(0(1(x1))) | → | 2(4(3(5(2(3(x1)))))) | (14) |
| 2(0(4(x1))) | → | 2(0(2(1(4(3(x1)))))) | (15) |
| 2(0(4(x1))) | → | 2(4(1(4(3(1(x1)))))) | (16) |
| 3(0(1(x1))) | → | 3(1(4(3(4(1(x1)))))) | (17) |
| 3(0(5(x1))) | → | 3(1(0(2(3(2(x1)))))) | (18) |
| 4(0(5(x1))) | → | 4(1(4(5(1(4(x1)))))) | (20) |
| 4(0(5(x1))) | → | 4(2(1(4(3(5(x1)))))) | (21) |
| 0(0(0(4(x1)))) | → | 0(1(1(5(2(3(4(x1))))))) | (25) |
| 4(0(0(4(x1)))) | → | 4(1(1(5(2(3(4(x1))))))) | (26) |
| 1(0(0(4(x1)))) | → | 1(1(1(5(2(3(4(x1))))))) | (27) |
| 2(0(0(4(x1)))) | → | 2(1(1(5(2(3(4(x1))))))) | (28) |
| 3(0(0(4(x1)))) | → | 3(1(1(5(2(3(4(x1))))))) | (29) |
| 5(0(0(4(x1)))) | → | 5(1(1(5(2(3(4(x1))))))) | (30) |
| 0(0(2(4(x1)))) | → | 0(1(5(4(3(4(4(x1))))))) | (31) |
| 4(0(2(4(x1)))) | → | 4(1(5(4(3(4(4(x1))))))) | (32) |
| 1(0(2(4(x1)))) | → | 1(1(5(4(3(4(4(x1))))))) | (33) |
| 2(0(2(4(x1)))) | → | 2(1(5(4(3(4(4(x1))))))) | (34) |
| 3(0(2(4(x1)))) | → | 3(1(5(4(3(4(4(x1))))))) | (35) |
| 5(0(2(4(x1)))) | → | 5(1(5(4(3(4(4(x1))))))) | (36) |
| 0(1(2(3(x1)))) | → | 0(5(1(4(1(4(4(x1))))))) | (37) |
| 4(1(2(3(x1)))) | → | 4(5(1(4(1(4(4(x1))))))) | (38) |
| 1(1(2(3(x1)))) | → | 1(5(1(4(1(4(4(x1))))))) | (39) |
| 2(1(2(3(x1)))) | → | 2(5(1(4(1(4(4(x1))))))) | (40) |
| 3(1(2(3(x1)))) | → | 3(5(1(4(1(4(4(x1))))))) | (41) |
| 5(1(2(3(x1)))) | → | 5(5(1(4(1(4(4(x1))))))) | (42) |
| 0(1(3(3(x1)))) | → | 0(0(2(1(1(0(5(x1))))))) | (43) |
| 4(1(3(3(x1)))) | → | 4(0(2(1(1(0(5(x1))))))) | (44) |
| 1(1(3(3(x1)))) | → | 1(0(2(1(1(0(5(x1))))))) | (45) |
| 2(1(3(3(x1)))) | → | 2(0(2(1(1(0(5(x1))))))) | (46) |
| 3(1(3(3(x1)))) | → | 3(0(2(1(1(0(5(x1))))))) | (47) |
| 5(1(3(3(x1)))) | → | 5(0(2(1(1(0(5(x1))))))) | (48) |
| 0(1(3(3(x1)))) | → | 0(5(4(0(3(2(3(x1))))))) | (49) |
| 4(1(3(3(x1)))) | → | 4(5(4(0(3(2(3(x1))))))) | (50) |
| 1(1(3(3(x1)))) | → | 1(5(4(0(3(2(3(x1))))))) | (51) |
| 2(1(3(3(x1)))) | → | 2(5(4(0(3(2(3(x1))))))) | (52) |
| 3(1(3(3(x1)))) | → | 3(5(4(0(3(2(3(x1))))))) | (53) |
| 5(1(3(3(x1)))) | → | 5(5(4(0(3(2(3(x1))))))) | (54) |
| 0(4(0(0(x1)))) | → | 0(2(5(2(1(1(1(x1))))))) | (55) |
| 4(4(0(0(x1)))) | → | 4(2(5(2(1(1(1(x1))))))) | (56) |
| 1(4(0(0(x1)))) | → | 1(2(5(2(1(1(1(x1))))))) | (57) |
| 2(4(0(0(x1)))) | → | 2(2(5(2(1(1(1(x1))))))) | (58) |
| 3(4(0(0(x1)))) | → | 3(2(5(2(1(1(1(x1))))))) | (59) |
| 5(4(0(0(x1)))) | → | 5(2(5(2(1(1(1(x1))))))) | (60) |
| 0(5(0(2(x1)))) | → | 0(1(5(2(1(0(2(x1))))))) | (61) |
| 4(5(0(2(x1)))) | → | 4(1(5(2(1(0(2(x1))))))) | (62) |
| 1(5(0(2(x1)))) | → | 1(1(5(2(1(0(2(x1))))))) | (63) |
| 2(5(0(2(x1)))) | → | 2(1(5(2(1(0(2(x1))))))) | (64) |
| 3(5(0(2(x1)))) | → | 3(1(5(2(1(0(2(x1))))))) | (65) |
| 5(5(0(2(x1)))) | → | 5(1(5(2(1(0(2(x1))))))) | (66) |
| 0(5(0(4(x1)))) | → | 0(1(0(3(2(4(4(x1))))))) | (67) |
| 4(5(0(4(x1)))) | → | 4(1(0(3(2(4(4(x1))))))) | (68) |
| 1(5(0(4(x1)))) | → | 1(1(0(3(2(4(4(x1))))))) | (69) |
| 2(5(0(4(x1)))) | → | 2(1(0(3(2(4(4(x1))))))) | (70) |
| 3(5(0(4(x1)))) | → | 3(1(0(3(2(4(4(x1))))))) | (71) |
| 5(5(0(4(x1)))) | → | 5(1(0(3(2(4(4(x1))))))) | (72) |
| 0(5(0(4(x1)))) | → | 0(1(5(1(0(3(4(x1))))))) | (73) |
| 4(5(0(4(x1)))) | → | 4(1(5(1(0(3(4(x1))))))) | (74) |
| 1(5(0(4(x1)))) | → | 1(1(5(1(0(3(4(x1))))))) | (75) |
| 2(5(0(4(x1)))) | → | 2(1(5(1(0(3(4(x1))))))) | (76) |
| 3(5(0(4(x1)))) | → | 3(1(5(1(0(3(4(x1))))))) | (77) |
| 5(5(0(4(x1)))) | → | 5(1(5(1(0(3(4(x1))))))) | (78) |
Root-labeling is applied.
We obtain the labeled TRSThere are 414 ruless (increase limit for explicit display).
| [04(x1)] | = | 1 · x1 + 286 |
| [40(x1)] | = | 1 · x1 + 13 |
| [01(x1)] | = | 1 · x1 + 132 |
| [14(x1)] | = | 1 · x1 |
| [42(x1)] | = | 1 · x1 + 24 |
| [23(x1)] | = | 1 · x1 |
| [33(x1)] | = | 1 · x1 + 95 |
| [30(x1)] | = | 1 · x1 |
| [44(x1)] | = | 1 · x1 + 17 |
| [34(x1)] | = | 1 · x1 + 52 |
| [41(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 |
| [32(x1)] | = | 1 · x1 |
| [43(x1)] | = | 1 · x1 + 61 |
| [45(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 |
| [02(x1)] | = | 1 · x1 + 114 |
| [21(x1)] | = | 1 · x1 + 2 |
| [11(x1)] | = | 1 · x1 |
| [10(x1)] | = | 1 · x1 |
| [22(x1)] | = | 1 · x1 + 16 |
| [12(x1)] | = | 1 · x1 + 44 |
| [13(x1)] | = | 1 · x1 + 173 |
| [15(x1)] | = | 1 · x1 |
| [24(x1)] | = | 1 · x1 + 37 |
| [00(x1)] | = | 1 · x1 + 145 |
| [03(x1)] | = | 1 · x1 + 234 |
| [05(x1)] | = | 1 · x1 + 132 |
| [50(x1)] | = | 1 · x1 + 2 |
| [20(x1)] | = | 1 · x1 + 19 |
| [54(x1)] | = | 1 · x1 + 21 |
| [51(x1)] | = | 1 · x1 + 2 |
| [52(x1)] | = | 1 · x1 |
| [53(x1)] | = | 1 · x1 |
| [55(x1)] | = | 1 · x1 + 2 |
| [25(x1)] | = | 1 · x1 + 2 |
There are 243 ruless (increase limit for explicit display).
| [04(x1)] | = | 1 · x1 + 2 |
| [44(x1)] | = | 1 · x1 + 3 |
| [01(x1)] | = | 1 · x1 + 4 |
| [14(x1)] | = | 1 · x1 |
| [42(x1)] | = | 1 · x1 |
| [23(x1)] | = | 1 · x1 |
| [33(x1)] | = | 1 · x1 |
| [34(x1)] | = | 1 · x1 |
| [11(x1)] | = | 1 · x1 + 1 |
| [10(x1)] | = | 1 · x1 + 5 |
| [02(x1)] | = | 1 · x1 |
| [22(x1)] | = | 1 · x1 + 3 |
| [21(x1)] | = | 1 · x1 |
| [12(x1)] | = | 1 · x1 |
| [13(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 + 1 |
| [32(x1)] | = | 1 · x1 |
| [24(x1)] | = | 1 · x1 |
| [43(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 |
| [50(x1)] | = | 1 · x1 + 6 |
| [20(x1)] | = | 1 · x1 + 4 |
| [40(x1)] | = | 1 · x1 |
| [54(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 |
| [45(x1)] | = | 1 · x1 |
| [30(x1)] | = | 1 · x1 + 4 |
| [31(x1)] | = | 1 · x1 |
| [51(x1)] | = | 1 · x1 + 2 |
| [05(x1)] | = | 1 · x1 + 4 |
| [03(x1)] | = | 1 · x1 |
| [25(x1)] | = | 1 · x1 |
| [55(x1)] | = | 1 · x1 + 2 |
| [52(x1)] | = | 1 · x1 |
| 04(44(x1)) | → | 01(14(42(23(33(34(x1)))))) | (80) |
| 01(13(32(x1))) | → | 02(24(43(34(44(42(x1)))))) | (100) |
| 13(35(50(x1))) | → | 11(14(43(33(32(20(x1)))))) | (109) |
| [01(x1)] | = | 1 · x1 + 1 |
| [11(x1)] | = | 1 · x1 |
| [10(x1)] | = | 1 · x1 |
| [02(x1)] | = | 1 · x1 |
| [22(x1)] | = | 1 · x1 |
| [21(x1)] | = | 1 · x1 |
| [14(x1)] | = | 1 · x1 |
| [12(x1)] | = | 1 · x1 |
| [13(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 |
| [24(x1)] | = | 1 · x1 |
| [40(x1)] | = | 1 · x1 |
| [54(x1)] | = | 1 · x1 |
| [43(x1)] | = | 1 · x1 |
| [34(x1)] | = | 1 · x1 |
| [44(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 |
| [42(x1)] | = | 1 · x1 |
| [45(x1)] | = | 1 · x1 |
| [30(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 |
| [50(x1)] | = | 1 · x1 |
| [51(x1)] | = | 1 · x1 |
| [33(x1)] | = | 1 · x1 |
| [05(x1)] | = | 1 · x1 + 1 |
| [03(x1)] | = | 1 · x1 |
| [32(x1)] | = | 1 · x1 |
| [23(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 |
| [25(x1)] | = | 1 · x1 |
| [55(x1)] | = | 1 · x1 |
| [20(x1)] | = | 1 · x1 |
| [52(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 |
| 01(11(10(x1))) | → | 02(22(21(11(11(10(x1)))))) | (91) |
| 01(11(14(x1))) | → | 02(22(21(11(11(14(x1)))))) | (92) |
| 01(11(11(x1))) | → | 02(22(21(11(11(11(x1)))))) | (93) |
| 01(11(12(x1))) | → | 02(22(21(11(11(12(x1)))))) | (94) |
| 01(11(13(x1))) | → | 02(22(21(11(11(13(x1)))))) | (95) |
| 01(11(15(x1))) | → | 02(22(21(11(11(15(x1)))))) | (96) |
| [10(x1)] | = | 1 · x1 |
| [02(x1)] | = | 1 · x1 + 1 |
| [24(x1)] | = | 1 · x1 |
| [40(x1)] | = | 1 · x1 |
| [11(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 |
| [54(x1)] | = | 1 · x1 |
| [43(x1)] | = | 1 · x1 |
| [34(x1)] | = | 1 · x1 |
| [44(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 |
| [42(x1)] | = | 1 · x1 |
| [45(x1)] | = | 1 · x1 |
| [30(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 + 1 |
| [50(x1)] | = | 1 · x1 |
| [51(x1)] | = | 1 · x1 + 1 |
| [01(x1)] | = | 1 · x1 |
| [13(x1)] | = | 1 · x1 + 1 |
| [33(x1)] | = | 1 · x1 |
| [05(x1)] | = | 1 · x1 |
| [03(x1)] | = | 1 · x1 |
| [32(x1)] | = | 1 · x1 + 1 |
| [23(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 + 1 |
| [21(x1)] | = | 1 · x1 |
| [25(x1)] | = | 1 · x1 |
| [55(x1)] | = | 1 · x1 + 1 |
| [20(x1)] | = | 1 · x1 |
| [52(x1)] | = | 1 · x1 |
| [22(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 + 1 |
| 10(02(24(40(x1)))) | → | 11(15(54(43(34(44(40(x1))))))) | (217) |
| 10(02(24(44(x1)))) | → | 11(15(54(43(34(44(44(x1))))))) | (218) |
| 10(02(24(41(x1)))) | → | 11(15(54(43(34(44(41(x1))))))) | (219) |
| 10(02(24(42(x1)))) | → | 11(15(54(43(34(44(42(x1))))))) | (220) |
| 10(02(24(43(x1)))) | → | 11(15(54(43(34(44(43(x1))))))) | (221) |
| 10(02(24(45(x1)))) | → | 11(15(54(43(34(44(45(x1))))))) | (222) |
| [30(x1)] | = | 1 · x1 + 1 |
| [02(x1)] | = | 1 · x1 |
| [24(x1)] | = | 1 · x1 |
| [40(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 |
| [54(x1)] | = | 1 · x1 |
| [43(x1)] | = | 1 · x1 |
| [34(x1)] | = | 1 · x1 |
| [44(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 |
| [42(x1)] | = | 1 · x1 |
| [45(x1)] | = | 1 · x1 |
| [50(x1)] | = | 1 · x1 |
| [51(x1)] | = | 1 · x1 |
| [01(x1)] | = | 1 · x1 |
| [13(x1)] | = | 1 · x1 |
| [33(x1)] | = | 1 · x1 |
| [05(x1)] | = | 1 · x1 |
| [03(x1)] | = | 1 · x1 |
| [32(x1)] | = | 1 · x1 |
| [23(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 |
| [11(x1)] | = | 1 · x1 |
| [21(x1)] | = | 1 · x1 |
| [25(x1)] | = | 1 · x1 |
| [55(x1)] | = | 1 · x1 |
| [20(x1)] | = | 1 · x1 |
| [52(x1)] | = | 1 · x1 |
| [10(x1)] | = | 1 · x1 |
| [22(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 |
| 30(02(24(40(x1)))) | → | 31(15(54(43(34(44(40(x1))))))) | (229) |
| 30(02(24(44(x1)))) | → | 31(15(54(43(34(44(44(x1))))))) | (230) |
| 30(02(24(41(x1)))) | → | 31(15(54(43(34(44(41(x1))))))) | (231) |
| 30(02(24(42(x1)))) | → | 31(15(54(43(34(44(42(x1))))))) | (232) |
| 30(02(24(43(x1)))) | → | 31(15(54(43(34(44(43(x1))))))) | (233) |
| 30(02(24(45(x1)))) | → | 31(15(54(43(34(44(45(x1))))))) | (234) |
| [50(x1)] | = | 1 · x1 |
| [02(x1)] | = | 1 · x1 + 1 |
| [24(x1)] | = | 1 · x1 |
| [40(x1)] | = | 1 · x1 |
| [51(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 |
| [54(x1)] | = | 1 · x1 |
| [43(x1)] | = | 1 · x1 |
| [34(x1)] | = | 1 · x1 |
| [44(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 |
| [42(x1)] | = | 1 · x1 |
| [45(x1)] | = | 1 · x1 |
| [01(x1)] | = | 1 · x1 |
| [13(x1)] | = | 1 · x1 |
| [33(x1)] | = | 1 · x1 |
| [30(x1)] | = | 1 · x1 |
| [05(x1)] | = | 1 · x1 |
| [03(x1)] | = | 1 · x1 |
| [32(x1)] | = | 1 · x1 |
| [23(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 |
| [11(x1)] | = | 1 · x1 |
| [21(x1)] | = | 1 · x1 |
| [25(x1)] | = | 1 · x1 |
| [55(x1)] | = | 1 · x1 |
| [20(x1)] | = | 1 · x1 |
| [52(x1)] | = | 1 · x1 |
| [10(x1)] | = | 1 · x1 |
| [22(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 |
| 50(02(24(40(x1)))) | → | 51(15(54(43(34(44(40(x1))))))) | (235) |
| 50(02(24(44(x1)))) | → | 51(15(54(43(34(44(44(x1))))))) | (236) |
| 50(02(24(41(x1)))) | → | 51(15(54(43(34(44(41(x1))))))) | (237) |
| 50(02(24(42(x1)))) | → | 51(15(54(43(34(44(42(x1))))))) | (238) |
| 50(02(24(43(x1)))) | → | 51(15(54(43(34(44(43(x1))))))) | (239) |
| 50(02(24(45(x1)))) | → | 51(15(54(43(34(44(45(x1))))))) | (240) |
| [01(x1)] | = | 1 · x1 |
| [13(x1)] | = | 1 · x1 |
| [33(x1)] | = | 1 · x1 + 1 |
| [30(x1)] | = | 1 · x1 |
| [05(x1)] | = | 1 · x1 |
| [54(x1)] | = | 1 · x1 |
| [40(x1)] | = | 1 · x1 |
| [03(x1)] | = | 1 · x1 |
| [32(x1)] | = | 1 · x1 |
| [23(x1)] | = | 1 · x1 |
| [34(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 |
| [45(x1)] | = | 1 · x1 |
| [11(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 |
| [21(x1)] | = | 1 · x1 |
| [25(x1)] | = | 1 · x1 |
| [51(x1)] | = | 1 · x1 |
| [55(x1)] | = | 1 · x1 |
| [50(x1)] | = | 1 · x1 |
| [02(x1)] | = | 1 · x1 |
| [20(x1)] | = | 1 · x1 |
| [52(x1)] | = | 1 · x1 |
| [10(x1)] | = | 1 · x1 |
| [24(x1)] | = | 1 · x1 |
| [22(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 |
| [44(x1)] | = | 1 · x1 |
| [42(x1)] | = | 1 · x1 |
| [43(x1)] | = | 1 · x1 |
| 01(13(33(30(x1)))) | → | 05(54(40(03(32(23(30(x1))))))) | (313) |
| 01(13(33(34(x1)))) | → | 05(54(40(03(32(23(34(x1))))))) | (314) |
| 01(13(33(31(x1)))) | → | 05(54(40(03(32(23(31(x1))))))) | (315) |
| 01(13(33(32(x1)))) | → | 05(54(40(03(32(23(32(x1))))))) | (316) |
| 01(13(33(33(x1)))) | → | 05(54(40(03(32(23(33(x1))))))) | (317) |
| 01(13(33(35(x1)))) | → | 05(54(40(03(32(23(35(x1))))))) | (318) |
| 41(13(33(30(x1)))) | → | 45(54(40(03(32(23(30(x1))))))) | (319) |
| 41(13(33(34(x1)))) | → | 45(54(40(03(32(23(34(x1))))))) | (320) |
| 41(13(33(31(x1)))) | → | 45(54(40(03(32(23(31(x1))))))) | (321) |
| 41(13(33(32(x1)))) | → | 45(54(40(03(32(23(32(x1))))))) | (322) |
| 41(13(33(33(x1)))) | → | 45(54(40(03(32(23(33(x1))))))) | (323) |
| 41(13(33(35(x1)))) | → | 45(54(40(03(32(23(35(x1))))))) | (324) |
| 11(13(33(30(x1)))) | → | 15(54(40(03(32(23(30(x1))))))) | (325) |
| 11(13(33(34(x1)))) | → | 15(54(40(03(32(23(34(x1))))))) | (326) |
| 11(13(33(31(x1)))) | → | 15(54(40(03(32(23(31(x1))))))) | (327) |
| 11(13(33(32(x1)))) | → | 15(54(40(03(32(23(32(x1))))))) | (328) |
| 11(13(33(33(x1)))) | → | 15(54(40(03(32(23(33(x1))))))) | (329) |
| 11(13(33(35(x1)))) | → | 15(54(40(03(32(23(35(x1))))))) | (330) |
| 21(13(33(30(x1)))) | → | 25(54(40(03(32(23(30(x1))))))) | (331) |
| 21(13(33(34(x1)))) | → | 25(54(40(03(32(23(34(x1))))))) | (332) |
| 21(13(33(31(x1)))) | → | 25(54(40(03(32(23(31(x1))))))) | (333) |
| 21(13(33(32(x1)))) | → | 25(54(40(03(32(23(32(x1))))))) | (334) |
| 21(13(33(33(x1)))) | → | 25(54(40(03(32(23(33(x1))))))) | (335) |
| 21(13(33(35(x1)))) | → | 25(54(40(03(32(23(35(x1))))))) | (336) |
| 31(13(33(30(x1)))) | → | 35(54(40(03(32(23(30(x1))))))) | (337) |
| 31(13(33(34(x1)))) | → | 35(54(40(03(32(23(34(x1))))))) | (338) |
| 31(13(33(31(x1)))) | → | 35(54(40(03(32(23(31(x1))))))) | (339) |
| 31(13(33(32(x1)))) | → | 35(54(40(03(32(23(32(x1))))))) | (340) |
| 31(13(33(33(x1)))) | → | 35(54(40(03(32(23(33(x1))))))) | (341) |
| 31(13(33(35(x1)))) | → | 35(54(40(03(32(23(35(x1))))))) | (342) |
| 51(13(33(30(x1)))) | → | 55(54(40(03(32(23(30(x1))))))) | (343) |
| 51(13(33(34(x1)))) | → | 55(54(40(03(32(23(34(x1))))))) | (344) |
| 51(13(33(31(x1)))) | → | 55(54(40(03(32(23(31(x1))))))) | (345) |
| 51(13(33(32(x1)))) | → | 55(54(40(03(32(23(32(x1))))))) | (346) |
| 51(13(33(33(x1)))) | → | 55(54(40(03(32(23(33(x1))))))) | (347) |
| 51(13(33(35(x1)))) | → | 55(54(40(03(32(23(35(x1))))))) | (348) |
| [05(x1)] | = | 1 · x1 |
| [50(x1)] | = | 1 · x1 + 1 |
| [02(x1)] | = | 1 · x1 |
| [20(x1)] | = | 1 · x1 |
| [01(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 |
| [52(x1)] | = | 1 · x1 |
| [21(x1)] | = | 1 · x1 |
| [10(x1)] | = | 1 · x1 |
| [24(x1)] | = | 1 · x1 |
| [22(x1)] | = | 1 · x1 |
| [23(x1)] | = | 1 · x1 |
| [25(x1)] | = | 1 · x1 |
| [45(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 |
| [11(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 |
| [55(x1)] | = | 1 · x1 |
| [51(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 |
| [40(x1)] | = | 1 · x1 |
| [03(x1)] | = | 1 · x1 |
| [32(x1)] | = | 1 · x1 + 1 |
| [44(x1)] | = | 1 · x1 |
| [42(x1)] | = | 1 · x1 |
| [43(x1)] | = | 1 · x1 |
| [34(x1)] | = | 1 · x1 + 1 |
| 05(50(02(20(x1)))) | → | 01(15(52(21(10(02(20(x1))))))) | (385) |
| 05(50(02(24(x1)))) | → | 01(15(52(21(10(02(24(x1))))))) | (386) |
| 05(50(02(21(x1)))) | → | 01(15(52(21(10(02(21(x1))))))) | (387) |
| 05(50(02(22(x1)))) | → | 01(15(52(21(10(02(22(x1))))))) | (388) |
| 05(50(02(23(x1)))) | → | 01(15(52(21(10(02(23(x1))))))) | (389) |
| 05(50(02(25(x1)))) | → | 01(15(52(21(10(02(25(x1))))))) | (390) |
| 45(50(02(20(x1)))) | → | 41(15(52(21(10(02(20(x1))))))) | (391) |
| 45(50(02(24(x1)))) | → | 41(15(52(21(10(02(24(x1))))))) | (392) |
| 45(50(02(21(x1)))) | → | 41(15(52(21(10(02(21(x1))))))) | (393) |
| 45(50(02(22(x1)))) | → | 41(15(52(21(10(02(22(x1))))))) | (394) |
| 45(50(02(23(x1)))) | → | 41(15(52(21(10(02(23(x1))))))) | (395) |
| 45(50(02(25(x1)))) | → | 41(15(52(21(10(02(25(x1))))))) | (396) |
| 15(50(02(20(x1)))) | → | 11(15(52(21(10(02(20(x1))))))) | (397) |
| 15(50(02(24(x1)))) | → | 11(15(52(21(10(02(24(x1))))))) | (398) |
| 15(50(02(21(x1)))) | → | 11(15(52(21(10(02(21(x1))))))) | (399) |
| 15(50(02(22(x1)))) | → | 11(15(52(21(10(02(22(x1))))))) | (400) |
| 15(50(02(23(x1)))) | → | 11(15(52(21(10(02(23(x1))))))) | (401) |
| 15(50(02(25(x1)))) | → | 11(15(52(21(10(02(25(x1))))))) | (402) |
| 25(50(02(20(x1)))) | → | 21(15(52(21(10(02(20(x1))))))) | (403) |
| 25(50(02(24(x1)))) | → | 21(15(52(21(10(02(24(x1))))))) | (404) |
| 25(50(02(21(x1)))) | → | 21(15(52(21(10(02(21(x1))))))) | (405) |
| 25(50(02(22(x1)))) | → | 21(15(52(21(10(02(22(x1))))))) | (406) |
| 25(50(02(23(x1)))) | → | 21(15(52(21(10(02(23(x1))))))) | (407) |
| 25(50(02(25(x1)))) | → | 21(15(52(21(10(02(25(x1))))))) | (408) |
| 35(50(02(20(x1)))) | → | 31(15(52(21(10(02(20(x1))))))) | (409) |
| 35(50(02(24(x1)))) | → | 31(15(52(21(10(02(24(x1))))))) | (410) |
| 35(50(02(21(x1)))) | → | 31(15(52(21(10(02(21(x1))))))) | (411) |
| 35(50(02(22(x1)))) | → | 31(15(52(21(10(02(22(x1))))))) | (412) |
| 35(50(02(23(x1)))) | → | 31(15(52(21(10(02(23(x1))))))) | (413) |
| 35(50(02(25(x1)))) | → | 31(15(52(21(10(02(25(x1))))))) | (414) |
| 55(50(02(20(x1)))) | → | 51(15(52(21(10(02(20(x1))))))) | (415) |
| 55(50(02(24(x1)))) | → | 51(15(52(21(10(02(24(x1))))))) | (416) |
| 55(50(02(21(x1)))) | → | 51(15(52(21(10(02(21(x1))))))) | (417) |
| 55(50(02(22(x1)))) | → | 51(15(52(21(10(02(22(x1))))))) | (418) |
| 55(50(02(23(x1)))) | → | 51(15(52(21(10(02(23(x1))))))) | (419) |
| 55(50(02(25(x1)))) | → | 51(15(52(21(10(02(25(x1))))))) | (420) |
| [05(x1)] | = | 1 · x1 + 1 |
| [50(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 |
| [40(x1)] | = | 1 · x1 |
| [01(x1)] | = | 1 · x1 |
| [10(x1)] | = | 1 · x1 |
| [03(x1)] | = | 1 · x1 |
| [32(x1)] | = | 1 · x1 |
| [24(x1)] | = | 1 · x1 |
| [44(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 |
| [42(x1)] | = | 1 · x1 |
| [43(x1)] | = | 1 · x1 |
| [45(x1)] | = | 1 · x1 + 1 |
| [15(x1)] | = | 1 · x1 + 1 |
| [11(x1)] | = | 1 · x1 |
| [25(x1)] | = | 1 · x1 + 1 |
| [21(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 + 1 |
| [31(x1)] | = | 1 · x1 |
| [55(x1)] | = | 1 · x1 + 1 |
| [51(x1)] | = | 1 · x1 |
| [34(x1)] | = | 1 · x1 |
| 05(50(04(40(x1)))) | → | 01(10(03(32(24(44(40(x1))))))) | (421) |
| 05(50(04(44(x1)))) | → | 01(10(03(32(24(44(44(x1))))))) | (422) |
| 05(50(04(41(x1)))) | → | 01(10(03(32(24(44(41(x1))))))) | (423) |
| 05(50(04(42(x1)))) | → | 01(10(03(32(24(44(42(x1))))))) | (424) |
| 05(50(04(43(x1)))) | → | 01(10(03(32(24(44(43(x1))))))) | (425) |
| 05(50(04(45(x1)))) | → | 01(10(03(32(24(44(45(x1))))))) | (426) |
| 45(50(04(40(x1)))) | → | 41(10(03(32(24(44(40(x1))))))) | (427) |
| 45(50(04(44(x1)))) | → | 41(10(03(32(24(44(44(x1))))))) | (428) |
| 45(50(04(41(x1)))) | → | 41(10(03(32(24(44(41(x1))))))) | (429) |
| 45(50(04(42(x1)))) | → | 41(10(03(32(24(44(42(x1))))))) | (430) |
| 45(50(04(43(x1)))) | → | 41(10(03(32(24(44(43(x1))))))) | (431) |
| 45(50(04(45(x1)))) | → | 41(10(03(32(24(44(45(x1))))))) | (432) |
| 15(50(04(40(x1)))) | → | 11(10(03(32(24(44(40(x1))))))) | (433) |
| 15(50(04(44(x1)))) | → | 11(10(03(32(24(44(44(x1))))))) | (434) |
| 15(50(04(41(x1)))) | → | 11(10(03(32(24(44(41(x1))))))) | (435) |
| 15(50(04(42(x1)))) | → | 11(10(03(32(24(44(42(x1))))))) | (436) |
| 15(50(04(43(x1)))) | → | 11(10(03(32(24(44(43(x1))))))) | (437) |
| 15(50(04(45(x1)))) | → | 11(10(03(32(24(44(45(x1))))))) | (438) |
| 25(50(04(40(x1)))) | → | 21(10(03(32(24(44(40(x1))))))) | (439) |
| 25(50(04(44(x1)))) | → | 21(10(03(32(24(44(44(x1))))))) | (440) |
| 25(50(04(41(x1)))) | → | 21(10(03(32(24(44(41(x1))))))) | (441) |
| 25(50(04(42(x1)))) | → | 21(10(03(32(24(44(42(x1))))))) | (442) |
| 25(50(04(43(x1)))) | → | 21(10(03(32(24(44(43(x1))))))) | (443) |
| 25(50(04(45(x1)))) | → | 21(10(03(32(24(44(45(x1))))))) | (444) |
| 35(50(04(40(x1)))) | → | 31(10(03(32(24(44(40(x1))))))) | (445) |
| 35(50(04(44(x1)))) | → | 31(10(03(32(24(44(44(x1))))))) | (446) |
| 35(50(04(41(x1)))) | → | 31(10(03(32(24(44(41(x1))))))) | (447) |
| 35(50(04(42(x1)))) | → | 31(10(03(32(24(44(42(x1))))))) | (448) |
| 35(50(04(43(x1)))) | → | 31(10(03(32(24(44(43(x1))))))) | (449) |
| 35(50(04(45(x1)))) | → | 31(10(03(32(24(44(45(x1))))))) | (450) |
| 55(50(04(40(x1)))) | → | 51(10(03(32(24(44(40(x1))))))) | (451) |
| 55(50(04(44(x1)))) | → | 51(10(03(32(24(44(44(x1))))))) | (452) |
| 55(50(04(41(x1)))) | → | 51(10(03(32(24(44(41(x1))))))) | (453) |
| 55(50(04(42(x1)))) | → | 51(10(03(32(24(44(42(x1))))))) | (454) |
| 55(50(04(43(x1)))) | → | 51(10(03(32(24(44(43(x1))))))) | (455) |
| 55(50(04(45(x1)))) | → | 51(10(03(32(24(44(45(x1))))))) | (456) |
| [05(x1)] | = | 1 · x1 + 1 |
| [50(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 |
| [40(x1)] | = | 1 · x1 |
| [01(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 |
| [51(x1)] | = | 1 · x1 |
| [10(x1)] | = | 1 · x1 |
| [03(x1)] | = | 1 · x1 |
| [34(x1)] | = | 1 · x1 |
| [44(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 |
| [42(x1)] | = | 1 · x1 |
| [43(x1)] | = | 1 · x1 |
| [45(x1)] | = | 1 · x1 |
| [11(x1)] | = | 1 · x1 |
| [25(x1)] | = | 1 · x1 |
| [21(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 |
| [55(x1)] | = | 1 · x1 |
| 05(50(04(40(x1)))) | → | 01(15(51(10(03(34(40(x1))))))) | (457) |
| 05(50(04(44(x1)))) | → | 01(15(51(10(03(34(44(x1))))))) | (458) |
| 05(50(04(41(x1)))) | → | 01(15(51(10(03(34(41(x1))))))) | (459) |
| 05(50(04(42(x1)))) | → | 01(15(51(10(03(34(42(x1))))))) | (460) |
| 05(50(04(43(x1)))) | → | 01(15(51(10(03(34(43(x1))))))) | (461) |
| 05(50(04(45(x1)))) | → | 01(15(51(10(03(34(45(x1))))))) | (462) |
| [45(x1)] | = | 1 · x1 + 1 |
| [50(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 |
| [40(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 |
| [51(x1)] | = | 1 · x1 |
| [10(x1)] | = | 1 · x1 |
| [03(x1)] | = | 1 · x1 |
| [34(x1)] | = | 1 · x1 |
| [44(x1)] | = | 1 · x1 |
| [42(x1)] | = | 1 · x1 |
| [43(x1)] | = | 1 · x1 |
| [11(x1)] | = | 1 · x1 |
| [25(x1)] | = | 1 · x1 |
| [21(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 |
| [55(x1)] | = | 1 · x1 |
| 45(50(04(40(x1)))) | → | 41(15(51(10(03(34(40(x1))))))) | (463) |
| 45(50(04(44(x1)))) | → | 41(15(51(10(03(34(44(x1))))))) | (464) |
| 45(50(04(41(x1)))) | → | 41(15(51(10(03(34(41(x1))))))) | (465) |
| 45(50(04(42(x1)))) | → | 41(15(51(10(03(34(42(x1))))))) | (466) |
| 45(50(04(43(x1)))) | → | 41(15(51(10(03(34(43(x1))))))) | (467) |
| 45(50(04(45(x1)))) | → | 41(15(51(10(03(34(45(x1))))))) | (468) |
| [15(x1)] | = | 1 · x1 |
| [50(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 + 2 |
| [40(x1)] | = | 1 · x1 |
| [11(x1)] | = | 1 · x1 |
| [51(x1)] | = | 1 · x1 + 1 |
| [10(x1)] | = | 1 · x1 |
| [03(x1)] | = | 1 · x1 |
| [34(x1)] | = | 1 · x1 |
| [44(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 |
| [42(x1)] | = | 1 · x1 |
| [43(x1)] | = | 1 · x1 |
| [45(x1)] | = | 1 · x1 |
| [25(x1)] | = | 1 · x1 |
| [21(x1)] | = | 1 · x1 + 1 |
| [35(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 + 1 |
| [55(x1)] | = | 1 · x1 |
| 15(50(04(40(x1)))) | → | 11(15(51(10(03(34(40(x1))))))) | (469) |
| 15(50(04(44(x1)))) | → | 11(15(51(10(03(34(44(x1))))))) | (470) |
| 15(50(04(41(x1)))) | → | 11(15(51(10(03(34(41(x1))))))) | (471) |
| 15(50(04(42(x1)))) | → | 11(15(51(10(03(34(42(x1))))))) | (472) |
| 15(50(04(43(x1)))) | → | 11(15(51(10(03(34(43(x1))))))) | (473) |
| 15(50(04(45(x1)))) | → | 11(15(51(10(03(34(45(x1))))))) | (474) |
| [25(x1)] | = | 1 · x1 + 1 |
| [50(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 |
| [40(x1)] | = | 1 · x1 |
| [21(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 |
| [51(x1)] | = | 1 · x1 |
| [10(x1)] | = | 1 · x1 |
| [03(x1)] | = | 1 · x1 |
| [34(x1)] | = | 1 · x1 |
| [44(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 |
| [42(x1)] | = | 1 · x1 |
| [43(x1)] | = | 1 · x1 |
| [45(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 |
| [55(x1)] | = | 1 · x1 |
| 25(50(04(40(x1)))) | → | 21(15(51(10(03(34(40(x1))))))) | (475) |
| 25(50(04(44(x1)))) | → | 21(15(51(10(03(34(44(x1))))))) | (476) |
| 25(50(04(41(x1)))) | → | 21(15(51(10(03(34(41(x1))))))) | (477) |
| 25(50(04(42(x1)))) | → | 21(15(51(10(03(34(42(x1))))))) | (478) |
| 25(50(04(43(x1)))) | → | 21(15(51(10(03(34(43(x1))))))) | (479) |
| 25(50(04(45(x1)))) | → | 21(15(51(10(03(34(45(x1))))))) | (480) |
| [35(x1)] | = | 1 · x1 + 1 |
| [50(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 |
| [40(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 |
| [51(x1)] | = | 1 · x1 |
| [10(x1)] | = | 1 · x1 |
| [03(x1)] | = | 1 · x1 |
| [34(x1)] | = | 1 · x1 |
| [44(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 |
| [42(x1)] | = | 1 · x1 |
| [43(x1)] | = | 1 · x1 |
| [45(x1)] | = | 1 · x1 |
| [55(x1)] | = | 1 · x1 |
| 35(50(04(40(x1)))) | → | 31(15(51(10(03(34(40(x1))))))) | (481) |
| 35(50(04(44(x1)))) | → | 31(15(51(10(03(34(44(x1))))))) | (482) |
| 35(50(04(41(x1)))) | → | 31(15(51(10(03(34(41(x1))))))) | (483) |
| 35(50(04(42(x1)))) | → | 31(15(51(10(03(34(42(x1))))))) | (484) |
| 35(50(04(43(x1)))) | → | 31(15(51(10(03(34(43(x1))))))) | (485) |
| 35(50(04(45(x1)))) | → | 31(15(51(10(03(34(45(x1))))))) | (486) |
| [55(x1)] | = | 1 · x1 |
| [50(x1)] | = | 1 · x1 + 1 |
| [04(x1)] | = | 1 · x1 |
| [40(x1)] | = | 1 · x1 |
| [51(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 |
| [10(x1)] | = | 1 · x1 |
| [03(x1)] | = | 1 · x1 |
| [34(x1)] | = | 1 · x1 |
| [44(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 |
| [42(x1)] | = | 1 · x1 |
| [43(x1)] | = | 1 · x1 |
| [45(x1)] | = | 1 · x1 |
| 55(50(04(40(x1)))) | → | 51(15(51(10(03(34(40(x1))))))) | (487) |
| 55(50(04(44(x1)))) | → | 51(15(51(10(03(34(44(x1))))))) | (488) |
| 55(50(04(41(x1)))) | → | 51(15(51(10(03(34(41(x1))))))) | (489) |
| 55(50(04(42(x1)))) | → | 51(15(51(10(03(34(42(x1))))))) | (490) |
| 55(50(04(43(x1)))) | → | 51(15(51(10(03(34(43(x1))))))) | (491) |
| 55(50(04(45(x1)))) | → | 51(15(51(10(03(34(45(x1))))))) | (492) |
There are no rules in the TRS. Hence, it is terminating.