The rewrite relation of the following TRS is considered.
1(2(0(x1))) | → | 4(0(3(3(5(4(5(1(4(3(x1)))))))))) | (1) |
1(0(0(4(5(x1))))) | → | 1(4(3(1(3(1(4(5(2(3(x1)))))))))) | (2) |
2(0(3(0(2(x1))))) | → | 3(3(1(2(2(4(5(0(4(3(x1)))))))))) | (3) |
2(1(0(1(0(x1))))) | → | 3(5(4(5(4(3(3(1(1(2(x1)))))))))) | (4) |
3(4(2(0(2(x1))))) | → | 3(5(3(0(3(3(2(5(3(2(x1)))))))))) | (5) |
0(3(5(2(4(0(x1)))))) | → | 4(4(0(2(3(2(2(5(3(2(x1)))))))))) | (6) |
1(1(2(0(4(5(x1)))))) | → | 3(0(5(4(2(1(0(2(3(3(x1)))))))))) | (7) |
2(1(1(0(1(2(x1)))))) | → | 3(4(4(1(3(2(2(2(5(5(x1)))))))))) | (8) |
2(2(0(1(1(1(x1)))))) | → | 2(3(4(1(5(2(2(2(5(4(x1)))))))))) | (9) |
2(4(1(0(4(2(x1)))))) | → | 1(5(1(3(2(3(4(4(4(0(x1)))))))))) | (10) |
2(4(2(1(1(1(x1)))))) | → | 1(3(5(4(3(4(3(1(4(4(x1)))))))))) | (11) |
3(0(1(0(0(2(x1)))))) | → | 2(4(2(5(3(5(0(3(3(2(x1)))))))))) | (12) |
3(0(1(1(1(1(x1)))))) | → | 3(2(2(4(4(5(2(4(5(1(x1)))))))))) | (13) |
4(1(1(2(0(2(x1)))))) | → | 4(0(3(4(4(4(2(3(2(3(x1)))))))))) | (14) |
0(2(1(1(1(1(0(x1))))))) | → | 0(1(5(5(3(5(2(5(5(5(x1)))))))))) | (15) |
0(2(4(1(1(1(5(x1))))))) | → | 4(4(3(4(3(2(3(0(2(2(x1)))))))))) | (16) |
0(4(2(0(0(4(1(x1))))))) | → | 4(2(5(4(1(0(4(3(3(1(x1)))))))))) | (17) |
0(4(3(0(5(4(1(x1))))))) | → | 0(3(1(5(3(1(2(5(4(1(x1)))))))))) | (18) |
1(0(5(2(2(0(0(x1))))))) | → | 1(5(4(4(3(4(5(4(5(2(x1)))))))))) | (19) |
1(1(3(4(5(0(0(x1))))))) | → | 1(3(1(5(3(4(1(4(5(3(x1)))))))))) | (20) |
1(4(3(1(5(0(5(x1))))))) | → | 5(0(3(3(2(4(1(3(3(2(x1)))))))))) | (21) |
1(5(0(2(0(5(5(x1))))))) | → | 2(5(2(5(4(2(0(0(5(5(x1)))))))))) | (22) |
2(0(1(5(2(0(5(x1))))))) | → | 4(3(3(5(5(3(1(3(5(5(x1)))))))))) | (23) |
2(4(0(5(4(1(4(x1))))))) | → | 3(4(5(5(1(5(3(5(1(4(x1)))))))))) | (24) |
3(4(1(4(0(4(5(x1))))))) | → | 3(2(2(1(3(4(3(3(0(3(x1)))))))))) | (25) |
4(1(0(4(2(0(0(x1))))))) | → | 4(2(2(3(1(0(0(3(4(0(x1)))))))))) | (26) |
4(1(0(4(2(0(3(x1))))))) | → | 0(4(3(0(0(1(5(4(3(2(x1)))))))))) | (27) |
4(1(1(1(0(1(2(x1))))))) | → | 3(3(2(3(3(0(1(5(5(2(x1)))))))))) | (28) |
0(2(1(x1))) | → | 3(4(1(5(4(5(3(3(0(4(x1)))))))))) | (29) |
5(4(0(0(1(x1))))) | → | 3(2(5(4(1(3(1(3(4(1(x1)))))))))) | (30) |
2(0(3(0(2(x1))))) | → | 3(4(0(5(4(2(2(1(3(3(x1)))))))))) | (31) |
0(1(0(1(2(x1))))) | → | 2(1(1(3(3(4(5(4(5(3(x1)))))))))) | (32) |
2(0(2(4(3(x1))))) | → | 2(3(5(2(3(3(0(3(5(3(x1)))))))))) | (33) |
0(4(2(5(3(0(x1)))))) | → | 2(3(5(2(2(3(2(0(4(4(x1)))))))))) | (34) |
5(4(0(2(1(1(x1)))))) | → | 3(3(2(0(1(2(4(5(0(3(x1)))))))))) | (35) |
2(1(0(1(1(2(x1)))))) | → | 5(5(2(2(2(3(1(4(4(3(x1)))))))))) | (36) |
1(1(1(0(2(2(x1)))))) | → | 4(5(2(2(2(5(1(4(3(2(x1)))))))))) | (37) |
2(4(0(1(4(2(x1)))))) | → | 0(4(4(4(3(2(3(1(5(1(x1)))))))))) | (38) |
1(1(1(2(4(2(x1)))))) | → | 4(4(1(3(4(3(4(5(3(1(x1)))))))))) | (39) |
2(0(0(1(0(3(x1)))))) | → | 2(3(3(0(5(3(5(2(4(2(x1)))))))))) | (40) |
1(1(1(1(0(3(x1)))))) | → | 1(5(4(2(5(4(4(2(2(3(x1)))))))))) | (41) |
2(0(2(1(1(4(x1)))))) | → | 3(2(3(2(4(4(4(3(0(4(x1)))))))))) | (42) |
0(1(1(1(1(2(0(x1))))))) | → | 5(5(5(2(5(3(5(5(1(0(x1)))))))))) | (43) |
5(1(1(1(4(2(0(x1))))))) | → | 2(2(0(3(2(3(4(3(4(4(x1)))))))))) | (44) |
1(4(0(0(2(4(0(x1))))))) | → | 1(3(3(4(0(1(4(5(2(4(x1)))))))))) | (45) |
1(4(5(0(3(4(0(x1))))))) | → | 1(4(5(2(1(3(5(1(3(0(x1)))))))))) | (46) |
0(0(2(2(5(0(1(x1))))))) | → | 2(5(4(5(4(3(4(4(5(1(x1)))))))))) | (47) |
0(0(5(4(3(1(1(x1))))))) | → | 3(5(4(1(4(3(5(1(3(1(x1)))))))))) | (48) |
5(0(5(1(3(4(1(x1))))))) | → | 2(3(3(1(4(2(3(3(0(5(x1)))))))))) | (49) |
5(5(0(2(0(5(1(x1))))))) | → | 5(5(0(0(2(4(5(2(5(2(x1)))))))))) | (50) |
5(0(2(5(1(0(2(x1))))))) | → | 5(5(3(1(3(5(5(3(3(4(x1)))))))))) | (51) |
4(1(4(5(0(4(2(x1))))))) | → | 4(1(5(3(5(1(5(5(4(3(x1)))))))))) | (52) |
5(4(0(4(1(4(3(x1))))))) | → | 3(0(3(3(4(3(1(2(2(3(x1)))))))))) | (53) |
0(0(2(4(0(1(4(x1))))))) | → | 0(4(3(0(0(1(3(2(2(4(x1)))))))))) | (54) |
3(0(2(4(0(1(4(x1))))))) | → | 2(3(4(5(1(0(0(3(4(0(x1)))))))))) | (55) |
2(1(0(1(1(1(4(x1))))))) | → | 2(5(5(1(0(3(3(2(3(3(x1)))))))))) | (56) |
There are 269 ruless (increase limit for explicit display).
We split (P,R) into the relative DP-problem (PD,P-PD,RD,R-RD) and (P-PD,R-RD) where the pairs PD
There are 245 ruless (increase limit for explicit display).
and the rules RDThere are no rules.
are deleted.As carrier we take the set {0,1}. Symbols are labeled by the interpretation of their arguments using the interpretations (modulo 2):
[5(x1)] | = | 0 |
[3#(x1)] | = | 0 |
[0#(x1)] | = | 0 |
[4#(x1)] | = | 0 |
[1#(x1)] | = | 0 |
[5#(x1)] | = | 0 |
[2#(x1)] | = | 0 |
[0(x1)] | = | 0 |
[1(x1)] | = | 1 |
[2(x1)] | = | 0 |
[3(x1)] | = | 0 |
[4(x1)] | = | 1 |
There are 538 ruless (increase limit for explicit display).
and the set of labeled rules:00(21(10(x1))) | → | 31(41(10(51(40(50(30(30(01(40(x1)))))))))) | (864) |
00(21(11(x1))) | → | 31(41(10(51(40(50(30(30(01(41(x1)))))))))) | (865) |
51(40(00(01(10(x1))))) | → | 30(20(51(41(10(31(10(31(41(10(x1)))))))))) | (866) |
51(40(00(01(11(x1))))) | → | 30(20(51(41(10(31(10(31(41(11(x1)))))))))) | (867) |
20(00(30(00(20(x1))))) | → | 31(40(00(51(40(20(21(10(30(30(x1)))))))))) | (868) |
20(00(30(00(21(x1))))) | → | 31(40(00(51(40(20(21(10(30(31(x1)))))))))) | (869) |
01(10(01(10(20(x1))))) | → | 21(11(10(30(31(40(51(40(50(30(x1)))))))))) | (870) |
01(10(01(10(21(x1))))) | → | 21(11(10(30(31(40(51(40(50(31(x1)))))))))) | (871) |
20(00(21(40(30(x1))))) | → | 20(30(50(20(30(30(00(30(50(30(x1)))))))))) | (872) |
20(00(21(40(31(x1))))) | → | 20(30(50(20(30(30(00(30(50(31(x1)))))))))) | (873) |
01(40(20(50(30(00(x1)))))) | → | 20(30(50(20(20(30(20(01(41(40(x1)))))))))) | (874) |
01(40(20(50(30(01(x1)))))) | → | 20(30(50(20(20(30(20(01(41(41(x1)))))))))) | (875) |
51(40(00(21(11(10(x1)))))) | → | 30(30(20(01(10(21(40(50(00(30(x1)))))))))) | (876) |
51(40(00(21(11(11(x1)))))) | → | 30(30(20(01(10(21(40(50(00(31(x1)))))))))) | (877) |
21(10(01(11(10(20(x1)))))) | → | 50(50(20(20(20(31(11(41(40(30(x1)))))))))) | (878) |
21(10(01(11(10(21(x1)))))) | → | 50(50(20(20(20(31(11(41(40(31(x1)))))))))) | (879) |
11(11(10(00(20(20(x1)))))) | → | 40(50(20(20(20(51(11(40(30(20(x1)))))))))) | (880) |
11(11(10(00(20(21(x1)))))) | → | 40(50(20(20(20(51(11(40(30(21(x1)))))))))) | (881) |
21(40(01(11(40(20(x1)))))) | → | 01(41(41(40(30(20(31(10(51(10(x1)))))))))) | (882) |
21(40(01(11(40(21(x1)))))) | → | 01(41(41(40(30(20(31(10(51(11(x1)))))))))) | (883) |
11(11(10(21(40(20(x1)))))) | → | 41(41(10(31(40(31(40(50(31(10(x1)))))))))) | (884) |
11(11(10(21(40(21(x1)))))) | → | 41(41(10(31(40(31(40(50(31(11(x1)))))))))) | (885) |
20(00(01(10(00(30(x1)))))) | → | 20(30(30(00(50(30(50(21(40(20(x1)))))))))) | (886) |
20(00(01(10(00(31(x1)))))) | → | 20(30(30(00(50(30(50(21(40(21(x1)))))))))) | (887) |
11(11(11(10(00(30(x1)))))) | → | 10(51(40(20(51(41(40(20(20(30(x1)))))))))) | (888) |
11(11(11(10(00(31(x1)))))) | → | 10(51(40(20(51(41(40(20(20(31(x1)))))))))) | (889) |
20(00(21(11(11(40(x1)))))) | → | 30(20(30(21(41(41(40(30(01(40(x1)))))))))) | (890) |
20(00(21(11(11(41(x1)))))) | → | 30(20(30(21(41(41(40(30(01(41(x1)))))))))) | (891) |
01(11(11(11(10(20(00(x1))))))) | → | 50(50(50(20(50(30(50(51(10(00(x1)))))))))) | (892) |
01(11(11(11(10(20(01(x1))))))) | → | 50(50(50(20(50(30(50(51(10(01(x1)))))))))) | (893) |
51(11(11(11(40(20(00(x1))))))) | → | 20(20(00(30(20(31(40(31(41(40(x1)))))))))) | (894) |
51(11(11(11(40(20(01(x1))))))) | → | 20(20(00(30(20(31(40(31(41(41(x1)))))))))) | (895) |
11(40(00(00(21(40(00(x1))))))) | → | 10(30(31(40(01(11(40(50(21(40(x1)))))))))) | (896) |
11(40(00(00(21(40(01(x1))))))) | → | 10(30(31(40(01(11(40(50(21(41(x1)))))))))) | (897) |
11(40(50(00(31(40(00(x1))))))) | → | 11(40(50(21(10(30(51(10(30(00(x1)))))))))) | (898) |
11(40(50(00(31(40(01(x1))))))) | → | 11(40(50(21(10(30(51(10(30(01(x1)))))))))) | (899) |
00(00(20(20(50(01(10(x1))))))) | → | 20(51(40(51(40(31(41(40(51(10(x1)))))))))) | (900) |
00(00(20(20(50(01(11(x1))))))) | → | 20(51(40(51(40(31(41(40(51(11(x1)))))))))) | (901) |
00(00(51(40(31(11(10(x1))))))) | → | 30(51(41(11(40(30(51(10(31(10(x1)))))))))) | (902) |
00(00(51(40(31(11(11(x1))))))) | → | 30(51(41(11(40(30(51(10(31(11(x1)))))))))) | (903) |
50(00(51(10(31(41(10(x1))))))) | → | 20(30(31(11(40(20(30(30(00(50(x1)))))))))) | (904) |
50(00(51(10(31(41(11(x1))))))) | → | 20(30(31(11(40(20(30(30(00(51(x1)))))))))) | (905) |
50(50(00(20(00(51(10(x1))))))) | → | 50(50(00(00(21(40(50(20(50(20(x1)))))))))) | (906) |
50(50(00(20(00(51(11(x1))))))) | → | 50(50(00(00(21(40(50(20(50(21(x1)))))))))) | (907) |
50(00(20(51(10(00(20(x1))))))) | → | 50(50(31(10(30(50(50(30(31(40(x1)))))))))) | (908) |
50(00(20(51(10(00(21(x1))))))) | → | 50(50(31(10(30(50(50(30(31(41(x1)))))))))) | (909) |
41(11(40(50(01(40(20(x1))))))) | → | 41(10(50(30(51(10(50(51(40(30(x1)))))))))) | (910) |
41(11(40(50(01(40(21(x1))))))) | → | 41(10(50(30(51(10(50(51(40(31(x1)))))))))) | (911) |
51(40(01(41(11(40(30(x1))))))) | → | 30(00(30(31(40(31(10(20(20(30(x1)))))))))) | (912) |
51(40(01(41(11(40(31(x1))))))) | → | 30(00(30(31(40(31(10(20(20(31(x1)))))))))) | (913) |
00(00(21(40(01(11(40(x1))))))) | → | 01(40(30(00(01(10(30(20(21(40(x1)))))))))) | (914) |
00(00(21(40(01(11(41(x1))))))) | → | 01(40(30(00(01(10(30(20(21(41(x1)))))))))) | (915) |
30(00(21(40(01(11(40(x1))))))) | → | 20(31(40(51(10(00(00(31(40(00(x1)))))))))) | (916) |
30(00(21(40(01(11(41(x1))))))) | → | 20(31(40(51(10(00(00(31(40(01(x1)))))))))) | (917) |
21(10(01(11(11(11(40(x1))))))) | → | 20(50(51(10(00(30(30(20(30(30(x1)))))))))) | (918) |
21(10(01(11(11(11(41(x1))))))) | → | 20(50(51(10(00(30(30(20(30(31(x1)))))))))) | (919) |
The dependency pairs are split into 3 components.
5#0(00(51(10(31(41(10(x1))))))) | → | 5#0(x1) | (544) |
[5#0(x1)] | = | 1 · x1 |
[00(x1)] | = | 1 · x1 |
[51(x1)] | = | 1 · x1 |
[10(x1)] | = | 1 · x1 |
[31(x1)] | = | 1 · x1 |
[41(x1)] | = | 1 · x1 |
5#0(00(51(10(31(41(10(x1))))))) | → | 5#0(x1) | (544) |
There are no pairs anymore.
2#0(00(01(10(00(30(x1)))))) | → | 2#0(x1) | (824) |
[2#0(x1)] | = | 1 · x1 |
[00(x1)] | = | 1 · x1 |
[01(x1)] | = | 1 · x1 |
[10(x1)] | = | 1 · x1 |
[30(x1)] | = | 1 · x1 |
2#0(00(01(10(00(30(x1)))))) | → | 2#0(x1) | (824) |
There are no pairs anymore.
0#1(40(20(50(30(01(x1)))))) | → | 0#1(41(41(x1))) | (651) |
0#1(10(01(10(20(x1))))) | → | 3#0(x1) | (634) |
3#0(00(21(40(01(11(40(x1))))))) | → | 0#0(x1) | (346) |
0#0(21(10(x1))) | → | 0#1(40(x1)) | (612) |
0#1(40(20(50(30(01(x1)))))) | → | 4#1(41(x1)) | (653) |
4#1(11(40(50(01(40(20(x1))))))) | → | 3#0(x1) | (368) |
3#0(00(21(40(01(11(41(x1))))))) | → | 0#1(x1) | (347) |
0#1(40(20(50(30(01(x1)))))) | → | 4#1(x1) | (655) |
0#0(21(11(x1))) | → | 0#1(41(x1)) | (613) |
0#0(21(11(x1))) | → | 4#1(x1) | (615) |
0#0(00(20(20(50(01(11(x1))))))) | → | 5#1(11(x1)) | (691) |
5#1(11(11(11(40(20(01(x1))))))) | → | 4#1(41(x1)) | (523) |
5#1(11(11(11(40(20(01(x1))))))) | → | 4#1(x1) | (525) |
0#0(00(21(40(01(11(40(x1))))))) | → | 0#1(40(30(00(01(10(30(20(21(40(x1)))))))))) | (710) |
0#0(00(21(40(01(11(41(x1))))))) | → | 0#1(40(30(00(01(10(30(20(21(41(x1)))))))))) | (711) |
0#0(00(21(40(01(11(40(x1))))))) | → | 3#0(00(01(10(30(20(21(40(x1)))))))) | (714) |
0#0(00(21(40(01(11(41(x1))))))) | → | 3#0(00(01(10(30(20(21(41(x1)))))))) | (715) |
0#0(00(21(40(01(11(40(x1))))))) | → | 0#0(01(10(30(20(21(40(x1))))))) | (716) |
0#0(00(21(40(01(11(41(x1))))))) | → | 0#0(01(10(30(20(21(41(x1))))))) | (717) |
0#0(00(21(40(01(11(40(x1))))))) | → | 0#1(10(30(20(21(40(x1)))))) | (718) |
0#0(00(21(40(01(11(41(x1))))))) | → | 0#1(10(30(20(21(41(x1)))))) | (719) |
0#0(00(21(40(01(11(40(x1))))))) | → | 2#1(40(x1)) | (726) |
2#1(40(01(11(40(21(x1)))))) | → | 5#1(11(x1)) | (803) |
2#1(40(01(11(40(21(x1)))))) | → | 1#1(x1) | (805) |
1#1(11(10(00(20(20(x1)))))) | → | 5#1(11(40(30(20(x1))))) | (382) |
1#1(11(10(00(20(21(x1)))))) | → | 5#1(11(40(30(21(x1))))) | (383) |
1#1(11(10(21(40(21(x1)))))) | → | 1#1(x1) | (409) |
1#1(40(00(00(21(40(00(x1))))))) | → | 0#1(11(40(50(21(40(x1)))))) | (436) |
1#1(40(00(00(21(40(01(x1))))))) | → | 0#1(11(40(50(21(41(x1)))))) | (437) |
1#1(40(00(00(21(40(00(x1))))))) | → | 2#1(40(x1)) | (444) |
1#1(40(00(00(21(40(01(x1))))))) | → | 2#1(41(x1)) | (445) |
2#1(10(01(11(10(20(x1)))))) | → | 3#0(x1) | (784) |
2#1(10(01(11(11(11(40(x1))))))) | → | 0#0(30(30(20(30(30(x1)))))) | (852) |
2#1(10(01(11(11(11(40(x1))))))) | → | 3#0(x1) | (862) |
1#1(40(00(00(21(40(01(x1))))))) | → | 4#1(x1) | (447) |
1#1(40(50(00(31(40(00(x1))))))) | → | 3#0(00(x1)) | (464) |
0#0(00(21(40(01(11(41(x1))))))) | → | 2#1(41(x1)) | (727) |
[0#1(x1)] | = | 0 |
[40(x1)] | = | 0 |
[20(x1)] | = | 0 |
[50(x1)] | = | 0 |
[30(x1)] | = | 0 |
[01(x1)] | = | 1 + 1 · x1 |
[41(x1)] | = | 0 |
[10(x1)] | = | 1 · x1 |
[3#0(x1)] | = | 0 |
[00(x1)] | = | 1 |
[21(x1)] | = | 1 |
[11(x1)] | = | 1 + 1 · x1 |
[0#0(x1)] | = | 0 |
[4#1(x1)] | = | 0 |
[5#1(x1)] | = | 0 |
[2#1(x1)] | = | 1 · x1 |
[1#1(x1)] | = | 0 |
[31(x1)] | = | 0 |
[51(x1)] | = | 0 |
41(11(40(50(01(40(20(x1))))))) | → | 41(10(50(30(51(10(50(51(40(30(x1)))))))))) | (910) |
41(11(40(50(01(40(21(x1))))))) | → | 41(10(50(30(51(10(50(51(40(31(x1)))))))))) | (911) |
11(11(10(00(20(20(x1)))))) | → | 40(50(20(20(20(51(11(40(30(20(x1)))))))))) | (880) |
11(11(10(00(20(21(x1)))))) | → | 40(50(20(20(20(51(11(40(30(21(x1)))))))))) | (881) |
11(11(10(21(40(21(x1)))))) | → | 41(41(10(31(40(31(40(50(31(11(x1)))))))))) | (885) |
11(11(11(10(00(30(x1)))))) | → | 10(51(40(20(51(41(40(20(20(30(x1)))))))))) | (888) |
11(40(00(00(21(40(00(x1))))))) | → | 10(30(31(40(01(11(40(50(21(40(x1)))))))))) | (896) |
11(40(00(00(21(40(01(x1))))))) | → | 10(30(31(40(01(11(40(50(21(41(x1)))))))))) | (897) |
11(40(50(00(31(40(00(x1))))))) | → | 11(40(50(21(10(30(51(10(30(00(x1)))))))))) | (898) |
11(40(50(00(31(40(01(x1))))))) | → | 11(40(50(21(10(30(51(10(30(01(x1)))))))))) | (899) |
21(40(01(11(40(21(x1)))))) | → | 01(41(41(40(30(20(31(10(51(11(x1)))))))))) | (883) |
20(00(30(00(20(x1))))) | → | 31(40(00(51(40(20(21(10(30(30(x1)))))))))) | (868) |
20(00(30(00(21(x1))))) | → | 31(40(00(51(40(20(21(10(30(31(x1)))))))))) | (869) |
20(00(01(10(00(30(x1)))))) | → | 20(30(30(00(50(30(50(21(40(20(x1)))))))))) | (886) |
20(00(21(40(30(x1))))) | → | 20(30(50(20(30(30(00(30(50(30(x1)))))))))) | (872) |
20(00(01(10(00(31(x1)))))) | → | 20(30(30(00(50(30(50(21(40(21(x1)))))))))) | (887) |
20(00(21(40(31(x1))))) | → | 20(30(50(20(30(30(00(30(50(31(x1)))))))))) | (873) |
20(00(21(11(11(40(x1)))))) | → | 30(20(30(21(41(41(40(30(01(40(x1)))))))))) | (890) |
20(00(21(11(11(41(x1)))))) | → | 30(20(30(21(41(41(40(30(01(41(x1)))))))))) | (891) |
30(00(21(40(01(11(40(x1))))))) | → | 20(31(40(51(10(00(00(31(40(00(x1)))))))))) | (916) |
30(00(21(40(01(11(41(x1))))))) | → | 20(31(40(51(10(00(00(31(40(01(x1)))))))))) | (917) |
01(10(01(10(20(x1))))) | → | 21(11(10(30(31(40(51(40(50(30(x1)))))))))) | (870) |
00(21(10(x1))) | → | 31(41(10(51(40(50(30(30(01(40(x1)))))))))) | (864) |
00(21(11(x1))) | → | 31(41(10(51(40(50(30(30(01(41(x1)))))))))) | (865) |
00(00(20(20(50(01(11(x1))))))) | → | 20(51(40(51(40(31(41(40(51(11(x1)))))))))) | (901) |
00(00(51(40(31(11(11(x1))))))) | → | 30(51(41(11(40(30(51(10(31(11(x1)))))))))) | (903) |
00(00(21(40(01(11(40(x1))))))) | → | 01(40(30(00(01(10(30(20(21(40(x1)))))))))) | (914) |
00(00(21(40(01(11(41(x1))))))) | → | 01(40(30(00(01(10(30(20(21(41(x1)))))))))) | (915) |
21(10(01(11(10(20(x1)))))) | → | 50(50(20(20(20(31(11(41(40(30(x1)))))))))) | (878) |
21(10(01(11(11(11(40(x1))))))) | → | 20(50(51(10(00(30(30(20(30(30(x1)))))))))) | (918) |
50(00(51(10(31(41(10(x1))))))) | → | 20(30(31(11(40(20(30(30(00(50(x1)))))))))) | (904) |
50(00(51(10(31(41(11(x1))))))) | → | 20(30(31(11(40(20(30(30(00(51(x1)))))))))) | (905) |
50(50(00(20(00(51(11(x1))))))) | → | 50(50(00(00(21(40(50(20(50(21(x1)))))))))) | (907) |
50(50(00(20(00(51(10(x1))))))) | → | 50(50(00(00(21(40(50(20(50(20(x1)))))))))) | (906) |
50(00(20(51(10(00(20(x1))))))) | → | 50(50(31(10(30(50(50(30(31(40(x1)))))))))) | (908) |
50(00(20(51(10(00(21(x1))))))) | → | 50(50(31(10(30(50(50(30(31(41(x1)))))))))) | (909) |
01(40(20(50(30(01(x1)))))) | → | 20(30(50(20(20(30(20(01(41(41(x1)))))))))) | (875) |
01(40(20(50(30(00(x1)))))) | → | 20(30(50(20(20(30(20(01(41(40(x1)))))))))) | (874) |
51(40(00(01(11(x1))))) | → | 30(20(51(41(10(31(10(31(41(11(x1)))))))))) | (867) |
01(11(11(11(10(20(00(x1))))))) | → | 50(50(50(20(50(30(50(51(10(00(x1)))))))))) | (892) |
01(11(11(11(10(20(01(x1))))))) | → | 50(50(50(20(50(30(50(51(10(01(x1)))))))))) | (893) |
51(40(00(21(11(10(x1)))))) | → | 30(30(20(01(10(21(40(50(00(30(x1)))))))))) | (876) |
51(11(11(11(40(20(01(x1))))))) | → | 20(20(00(30(20(31(40(31(41(41(x1)))))))))) | (895) |
51(40(01(41(11(40(30(x1))))))) | → | 30(00(30(31(40(31(10(20(20(30(x1)))))))))) | (912) |
2#1(10(01(11(10(20(x1)))))) | → | 3#0(x1) | (784) |
2#1(10(01(11(11(11(40(x1))))))) | → | 0#0(30(30(20(30(30(x1)))))) | (852) |
2#1(10(01(11(11(11(40(x1))))))) | → | 3#0(x1) | (862) |
[0#1(x1)] | = | 1 |
[40(x1)] | = | 1 |
[20(x1)] | = | 0 |
[50(x1)] | = | 0 |
[30(x1)] | = | 0 |
[01(x1)] | = | 0 |
[41(x1)] | = | 0 |
[10(x1)] | = | 1 |
[3#0(x1)] | = | 1 |
[00(x1)] | = | 0 |
[21(x1)] | = | 0 |
[11(x1)] | = | 1 · x1 |
[0#0(x1)] | = | 1 |
[4#1(x1)] | = | 1 |
[5#1(x1)] | = | 1 |
[2#1(x1)] | = | 1 · x1 |
[1#1(x1)] | = | 1 |
[31(x1)] | = | 0 |
[51(x1)] | = | 0 |
41(11(40(50(01(40(20(x1))))))) | → | 41(10(50(30(51(10(50(51(40(30(x1)))))))))) | (910) |
41(11(40(50(01(40(21(x1))))))) | → | 41(10(50(30(51(10(50(51(40(31(x1)))))))))) | (911) |
11(11(10(00(20(20(x1)))))) | → | 40(50(20(20(20(51(11(40(30(20(x1)))))))))) | (880) |
11(11(10(00(20(21(x1)))))) | → | 40(50(20(20(20(51(11(40(30(21(x1)))))))))) | (881) |
11(11(10(21(40(21(x1)))))) | → | 41(41(10(31(40(31(40(50(31(11(x1)))))))))) | (885) |
11(11(11(10(00(30(x1)))))) | → | 10(51(40(20(51(41(40(20(20(30(x1)))))))))) | (888) |
11(40(00(00(21(40(00(x1))))))) | → | 10(30(31(40(01(11(40(50(21(40(x1)))))))))) | (896) |
11(40(00(00(21(40(01(x1))))))) | → | 10(30(31(40(01(11(40(50(21(41(x1)))))))))) | (897) |
11(40(50(00(31(40(00(x1))))))) | → | 11(40(50(21(10(30(51(10(30(00(x1)))))))))) | (898) |
11(40(50(00(31(40(01(x1))))))) | → | 11(40(50(21(10(30(51(10(30(01(x1)))))))))) | (899) |
21(40(01(11(40(21(x1)))))) | → | 01(41(41(40(30(20(31(10(51(11(x1)))))))))) | (883) |
20(00(30(00(20(x1))))) | → | 31(40(00(51(40(20(21(10(30(30(x1)))))))))) | (868) |
20(00(30(00(21(x1))))) | → | 31(40(00(51(40(20(21(10(30(31(x1)))))))))) | (869) |
20(00(01(10(00(30(x1)))))) | → | 20(30(30(00(50(30(50(21(40(20(x1)))))))))) | (886) |
20(00(21(40(30(x1))))) | → | 20(30(50(20(30(30(00(30(50(30(x1)))))))))) | (872) |
20(00(01(10(00(31(x1)))))) | → | 20(30(30(00(50(30(50(21(40(21(x1)))))))))) | (887) |
20(00(21(40(31(x1))))) | → | 20(30(50(20(30(30(00(30(50(31(x1)))))))))) | (873) |
20(00(21(11(11(40(x1)))))) | → | 30(20(30(21(41(41(40(30(01(40(x1)))))))))) | (890) |
20(00(21(11(11(41(x1)))))) | → | 30(20(30(21(41(41(40(30(01(41(x1)))))))))) | (891) |
30(00(21(40(01(11(40(x1))))))) | → | 20(31(40(51(10(00(00(31(40(00(x1)))))))))) | (916) |
30(00(21(40(01(11(41(x1))))))) | → | 20(31(40(51(10(00(00(31(40(01(x1)))))))))) | (917) |
01(10(01(10(20(x1))))) | → | 21(11(10(30(31(40(51(40(50(30(x1)))))))))) | (870) |
00(21(10(x1))) | → | 31(41(10(51(40(50(30(30(01(40(x1)))))))))) | (864) |
00(21(11(x1))) | → | 31(41(10(51(40(50(30(30(01(41(x1)))))))))) | (865) |
00(00(20(20(50(01(11(x1))))))) | → | 20(51(40(51(40(31(41(40(51(11(x1)))))))))) | (901) |
00(00(51(40(31(11(11(x1))))))) | → | 30(51(41(11(40(30(51(10(31(11(x1)))))))))) | (903) |
00(00(21(40(01(11(40(x1))))))) | → | 01(40(30(00(01(10(30(20(21(40(x1)))))))))) | (914) |
00(00(21(40(01(11(41(x1))))))) | → | 01(40(30(00(01(10(30(20(21(41(x1)))))))))) | (915) |
21(10(01(11(10(20(x1)))))) | → | 50(50(20(20(20(31(11(41(40(30(x1)))))))))) | (878) |
21(10(01(11(11(11(40(x1))))))) | → | 20(50(51(10(00(30(30(20(30(30(x1)))))))))) | (918) |
50(00(51(10(31(41(10(x1))))))) | → | 20(30(31(11(40(20(30(30(00(50(x1)))))))))) | (904) |
50(00(51(10(31(41(11(x1))))))) | → | 20(30(31(11(40(20(30(30(00(51(x1)))))))))) | (905) |
50(50(00(20(00(51(11(x1))))))) | → | 50(50(00(00(21(40(50(20(50(21(x1)))))))))) | (907) |
50(50(00(20(00(51(10(x1))))))) | → | 50(50(00(00(21(40(50(20(50(20(x1)))))))))) | (906) |
50(00(20(51(10(00(20(x1))))))) | → | 50(50(31(10(30(50(50(30(31(40(x1)))))))))) | (908) |
50(00(20(51(10(00(21(x1))))))) | → | 50(50(31(10(30(50(50(30(31(41(x1)))))))))) | (909) |
01(40(20(50(30(01(x1)))))) | → | 20(30(50(20(20(30(20(01(41(41(x1)))))))))) | (875) |
01(40(20(50(30(00(x1)))))) | → | 20(30(50(20(20(30(20(01(41(40(x1)))))))))) | (874) |
51(40(00(01(11(x1))))) | → | 30(20(51(41(10(31(10(31(41(11(x1)))))))))) | (867) |
01(11(11(11(10(20(00(x1))))))) | → | 50(50(50(20(50(30(50(51(10(00(x1)))))))))) | (892) |
01(11(11(11(10(20(01(x1))))))) | → | 50(50(50(20(50(30(50(51(10(01(x1)))))))))) | (893) |
51(40(00(21(11(10(x1)))))) | → | 30(30(20(01(10(21(40(50(00(30(x1)))))))))) | (876) |
51(11(11(11(40(20(01(x1))))))) | → | 20(20(00(30(20(31(40(31(41(41(x1)))))))))) | (895) |
51(40(01(41(11(40(30(x1))))))) | → | 30(00(30(31(40(31(10(20(20(30(x1)))))))))) | (912) |
1#1(40(00(00(21(40(01(x1))))))) | → | 2#1(41(x1)) | (445) |
0#0(00(21(40(01(11(41(x1))))))) | → | 2#1(41(x1)) | (727) |
There are no pairs anymore.
[0#(x1)] | = | 2 + x1 |
[2#(x1)] | = | -2 + x1 |
[4#(x1)] | = | -1 + x1 |
[5#(x1)] | = | x1 |
[0(x1)] | = | 2 + x1 |
[3#(x1)] | = | -2 + x1 |
[2(x1)] | = | x1 |
[3(x1)] | = | -2 + x1 |
[4(x1)] | = | x1 |
[1(x1)] | = | 2 + x1 |
[5(x1)] | = | x1 |
[1#(x1)] | = | x1 |
0#(2(1(x1))) | → | 0#(4(x1)) | (65) |
0#(2(1(x1))) | → | 4#(x1) | (66) |
0#(1(0(1(2(x1))))) | → | 3#(x1) | (95) |
0#(4(2(5(3(0(x1)))))) | → | 4#(4(x1)) | (113) |
0#(4(2(5(3(0(x1)))))) | → | 4#(x1) | (114) |
1#(1(1(0(2(2(x1)))))) | → | 5#(1(4(3(2(x1))))) | (140) |
2#(4(0(1(4(2(x1)))))) | → | 1#(x1) | (153) |
1#(1(1(2(4(2(x1)))))) | → | 1#(x1) | (163) |
5#(1(1(1(4(2(0(x1))))))) | → | 4#(4(x1)) | (209) |
5#(1(1(1(4(2(0(x1))))))) | → | 4#(x1) | (210) |
1#(4(0(0(2(4(0(x1))))))) | → | 0#(1(4(5(2(4(x1)))))) | (215) |
1#(4(0(0(2(4(0(x1))))))) | → | 2#(4(x1)) | (219) |
1#(4(0(0(2(4(0(x1))))))) | → | 4#(x1) | (220) |
1#(4(5(0(3(4(0(x1))))))) | → | 3#(0(x1)) | (229) |
0#(0(2(2(5(0(1(x1))))))) | → | 5#(1(x1)) | (238) |
4#(1(4(5(0(4(2(x1))))))) | → | 3#(x1) | (287) |
0#(0(2(4(0(1(4(x1))))))) | → | 0#(4(3(0(0(1(3(2(2(4(x1)))))))))) | (297) |
0#(0(2(4(0(1(4(x1))))))) | → | 3#(0(0(1(3(2(2(4(x1)))))))) | (299) |
0#(0(2(4(0(1(4(x1))))))) | → | 0#(0(1(3(2(2(4(x1))))))) | (300) |
0#(0(2(4(0(1(4(x1))))))) | → | 0#(1(3(2(2(4(x1)))))) | (301) |
0#(0(2(4(0(1(4(x1))))))) | → | 2#(4(x1)) | (305) |
3#(0(2(4(0(1(4(x1))))))) | → | 0#(x1) | (315) |
The dependency pairs are split into 1 component.
0#(4(2(5(3(0(x1)))))) | → | 0#(4(4(x1))) | (112) |
[0#(x1)] | = | 1 + x1 |
[4(x1)] | = | x1 |
[1(x1)] | = | 1 + x1 |
[5(x1)] | = | -1 + x1 |
[0(x1)] | = | 2 + x1 |
[2(x1)] | = | 1 + x1 |
[3(x1)] | = | -1 + x1 |
0#(4(2(5(3(0(x1)))))) | → | 0#(4(4(x1))) | (112) |
There are no pairs anymore.