The rewrite relation of the following TRS is considered.
There are 158 ruless (increase limit for explicit display).
There are 158 ruless (increase limit for explicit display).
{0(☐), 1(☐), 2(☐), 3(☐), 4(☐), 5(☐)}
We obtain the transformed TRSThere are 441 ruless (increase limit for explicit display).
Root-labeling is applied.
We obtain the labeled TRSThere are 2646 ruless (increase limit for explicit display).
| [01(x1)] | = | 1 · x1 + 4 |
| [10(x1)] | = | 1 · x1 + 2 |
| [00(x1)] | = | 1 · x1 + 2 |
| [02(x1)] | = | 1 · x1 |
| [21(x1)] | = | 1 · x1 |
| [03(x1)] | = | 1 · x1 |
| [05(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 + 2 |
| [31(x1)] | = | 1 · x1 |
| [11(x1)] | = | 1 · x1 + 2 |
| [12(x1)] | = | 1 · x1 |
| [13(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 |
| [14(x1)] | = | 1 · x1 |
| [54(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 |
| [20(x1)] | = | 1 · x1 |
| [30(x1)] | = | 1 · x1 + 1 |
| [40(x1)] | = | 1 · x1 |
| [50(x1)] | = | 1 · x1 |
| [22(x1)] | = | 1 · x1 |
| [32(x1)] | = | 1 · x1 |
| [52(x1)] | = | 1 · x1 |
| [24(x1)] | = | 1 · x1 |
| [34(x1)] | = | 1 · x1 |
| [25(x1)] | = | 1 · x1 |
| [51(x1)] | = | 1 · x1 |
| [23(x1)] | = | 1 · x1 |
| [33(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 |
| [42(x1)] | = | 1 · x1 |
| [43(x1)] | = | 1 · x1 + 1 |
| [45(x1)] | = | 1 · x1 + 2 |
| [44(x1)] | = | 1 · x1 |
| [53(x1)] | = | 1 · x1 |
| [55(x1)] | = | 1 · x1 |
There are 2568 ruless (increase limit for explicit display).
There are 150 ruless (increase limit for explicit display).
The dependency pairs are split into 1 component.
| 00#(01(10(00(01(x1))))) | → | 00#(00(01(x1))) | (3335) |
| 00#(01(10(00(00(x1))))) | → | 00#(00(00(x1))) | (3333) |
| 00#(01(10(00(04(x1))))) | → | 00#(00(04(x1))) | (3343) |
| [00(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 |
| [45(x1)] | = | 1 · x1 |
| [50(x1)] | = | 1 · x1 |
| [02(x1)] | = | 1 · x1 |
| [44(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 |
| [10(x1)] | = | 1 · x1 |
| [05(x1)] | = | 1 · x1 |
| [52(x1)] | = | 1 · x1 |
| [03(x1)] | = | 1 · x1 |
| [53(x1)] | = | 1 · x1 |
| [55(x1)] | = | 1 · x1 |
| [01(x1)] | = | 1 · x1 |
| [12(x1)] | = | 1 · x1 |
| [21(x1)] | = | 1 · x1 |
| [22(x1)] | = | 1 · x1 |
| [23(x1)] | = | 1 · x1 |
| [25(x1)] | = | 1 · x1 |
| [13(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 |
| [11(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 |
| [20(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 |
| [42(x1)] | = | 1 · x1 |
| [24(x1)] | = | 1 · x1 |
| [54(x1)] | = | 1 · x1 |
| [40(x1)] | = | 1 · x1 |
| [14(x1)] | = | 1 · x1 |
| [51(x1)] | = | 1 · x1 |
| [34(x1)] | = | 1 · x1 |
| [00#(x1)] | = | 1 · x1 |
| 00(04(45(50(02(x1))))) | → | 04(44(41(10(00(05(52(x1))))))) | (2977) |
| 00(04(45(50(03(x1))))) | → | 04(44(41(10(00(05(53(x1))))))) | (2978) |
| 00(04(45(50(05(x1))))) | → | 04(44(41(10(00(05(55(x1))))))) | (2979) |
| 00(01(10(02(x1)))) | → | 01(12(21(10(00(02(22(x1))))))) | (1933) |
| 00(01(10(03(x1)))) | → | 01(12(21(10(00(02(23(x1))))))) | (1934) |
| 00(01(10(05(x1)))) | → | 01(12(21(10(00(02(25(x1))))))) | (1935) |
| 00(01(10(00(00(x1))))) | → | 01(13(31(10(00(00(00(x1))))))) | (2291) |
| 00(01(10(00(01(x1))))) | → | 01(13(31(10(00(00(01(x1))))))) | (2292) |
| 00(01(10(00(02(x1))))) | → | 01(13(31(10(00(00(02(x1))))))) | (2293) |
| 00(01(10(00(03(x1))))) | → | 01(13(31(10(00(00(03(x1))))))) | (2294) |
| 00(01(10(00(05(x1))))) | → | 01(13(31(10(00(00(05(x1))))))) | (2295) |
| 00(01(10(00(04(x1))))) | → | 01(13(31(10(00(00(04(x1))))))) | (2296) |
| 00(01(11(10(00(x1))))) | → | 01(13(35(50(01(10(00(x1))))))) | (2651) |
| 00(01(11(10(01(x1))))) | → | 01(13(35(50(01(10(01(x1))))))) | (2652) |
| 00(01(11(10(02(x1))))) | → | 01(13(35(50(01(10(02(x1))))))) | (2653) |
| 00(01(11(10(03(x1))))) | → | 01(13(35(50(01(10(03(x1))))))) | (2654) |
| 00(01(11(10(05(x1))))) | → | 01(13(35(50(01(10(05(x1))))))) | (2655) |
| 00(01(11(10(04(x1))))) | → | 01(13(35(50(01(10(04(x1))))))) | (2656) |
| 00(01(11(10(02(x1))))) | → | 01(12(20(00(01(12(22(x1))))))) | (2797) |
| 00(01(11(10(03(x1))))) | → | 01(12(20(00(01(12(23(x1))))))) | (2798) |
| 00(01(11(10(05(x1))))) | → | 01(12(20(00(01(12(25(x1))))))) | (2799) |
| 01(10(05(x1))) | → | 00(02(21(11(11(15(x1)))))) | (873) |
| 01(10(05(x1))) | → | 00(03(31(11(11(15(x1)))))) | (879) |
| 01(10(05(x1))) | → | 04(42(20(01(12(25(x1)))))) | (957) |
| 50(01(10(05(x1)))) | → | 52(21(10(00(02(24(45(x1))))))) | (2145) |
| 50(01(10(02(x1)))) | → | 52(21(11(10(00(05(52(x1))))))) | (2179) |
| 50(01(10(03(x1)))) | → | 52(21(11(10(00(05(53(x1))))))) | (2180) |
| 50(01(10(05(x1)))) | → | 52(21(11(10(00(05(55(x1))))))) | (2181) |
| 50(04(45(50(02(x1))))) | → | 54(44(41(10(00(05(52(x1))))))) | (3007) |
| 50(04(45(50(03(x1))))) | → | 54(44(41(10(00(05(53(x1))))))) | (3008) |
| 50(04(45(50(05(x1))))) | → | 54(44(41(10(00(05(55(x1))))))) | (3009) |
| 50(01(15(54(40(00(x1)))))) | → | 52(21(14(45(50(00(00(x1))))))) | (3257) |
| 50(01(15(54(40(01(x1)))))) | → | 52(21(14(45(50(00(01(x1))))))) | (3258) |
| 50(01(15(54(40(02(x1)))))) | → | 52(21(14(45(50(00(02(x1))))))) | (3259) |
| 50(01(15(54(40(03(x1)))))) | → | 52(21(14(45(50(00(03(x1))))))) | (3260) |
| 50(01(15(54(40(05(x1)))))) | → | 52(21(14(45(50(00(05(x1))))))) | (3261) |
| 50(01(15(54(40(04(x1)))))) | → | 52(21(14(45(50(00(04(x1))))))) | (3262) |
| 50(04(44(45(50(05(x1)))))) | → | 52(20(05(54(40(04(45(x1))))))) | (3297) |
| 40(04(45(50(02(x1))))) | → | 44(44(41(10(00(05(52(x1))))))) | (3001) |
| 40(04(45(50(03(x1))))) | → | 44(44(41(10(00(05(53(x1))))))) | (3002) |
| 40(04(45(50(05(x1))))) | → | 44(44(41(10(00(05(55(x1))))))) | (3003) |
| 01(10(00(x1))) | → | 00(02(21(11(11(10(x1)))))) | (869) |
| 01(10(02(x1))) | → | 00(02(21(11(11(12(x1)))))) | (871) |
| 01(10(03(x1))) | → | 00(02(21(11(11(13(x1)))))) | (872) |
| 01(10(00(x1))) | → | 00(03(31(11(11(10(x1)))))) | (875) |
| 01(10(02(x1))) | → | 00(03(31(11(11(12(x1)))))) | (877) |
| 01(10(03(x1))) | → | 00(03(31(11(11(13(x1)))))) | (878) |
| 01(10(02(x1))) | → | 04(42(20(01(12(22(x1)))))) | (955) |
| 01(10(03(x1))) | → | 04(42(20(01(12(23(x1)))))) | (956) |
| 01(15(50(05(x1)))) | → | 00(05(51(13(34(45(x1)))))) | (1221) |
The dependency pairs are split into 0 components.