The rewrite relation of the following TRS is considered.
0(q0(0(x1))) | → | 0(0(q0(x1))) | (1) |
0(q0(h(x1))) | → | 0(0(q0(h(x1)))) | (2) |
0(q0(1(x1))) | → | 0(1(q0(x1))) | (3) |
1(q0(0(x1))) | → | 0(0(q1(x1))) | (4) |
1(q0(h(x1))) | → | 0(0(q1(h(x1)))) | (5) |
1(q0(1(x1))) | → | 0(1(q1(x1))) | (6) |
1(q1(0(x1))) | → | 1(0(q1(x1))) | (7) |
1(q1(h(x1))) | → | 1(0(q1(h(x1)))) | (8) |
1(q1(1(x1))) | → | 1(1(q1(x1))) | (9) |
0(q1(0(x1))) | → | 0(0(q2(x1))) | (10) |
0(q1(h(x1))) | → | 0(0(q2(h(x1)))) | (11) |
0(q1(1(x1))) | → | 0(1(q2(x1))) | (12) |
1(q2(0(x1))) | → | 1(0(q2(x1))) | (13) |
1(q2(h(x1))) | → | 1(0(q2(h(x1)))) | (14) |
1(q2(1(x1))) | → | 1(1(q2(x1))) | (15) |
0(q2(x1)) | → | q3(1(x1)) | (16) |
1(q3(x1)) | → | q3(1(x1)) | (17) |
0(q3(x1)) | → | q4(0(x1)) | (18) |
1(q4(x1)) | → | q4(1(x1)) | (19) |
0(q4(0(x1))) | → | 1(0(q5(x1))) | (20) |
0(q4(h(x1))) | → | 1(0(q5(h(x1)))) | (21) |
0(q4(1(x1))) | → | 1(1(q5(x1))) | (22) |
1(q5(0(x1))) | → | 0(0(q1(x1))) | (23) |
1(q5(h(x1))) | → | 0(0(q1(h(x1)))) | (24) |
1(q5(1(x1))) | → | 0(1(q1(x1))) | (25) |
h(q0(x1)) | → | h(0(q0(x1))) | (26) |
h(q1(x1)) | → | h(0(q1(x1))) | (27) |
h(q2(x1)) | → | h(0(q2(x1))) | (28) |
h(q3(x1)) | → | h(0(q3(x1))) | (29) |
h(q4(x1)) | → | h(0(q4(x1))) | (30) |
h(q5(x1)) | → | h(0(q5(x1))) | (31) |
There is a looping derivation.
0 q0 h →+ 0 0 q0 h ε
The derivation can be derived as follows.