The rewrite relation of the following TRS is considered.
| a(c(x1)) | → | a(x1) | (1) |
| a(c(b(c(x1)))) | → | c(b(c(c(x1)))) | (2) |
| c(x1) | → | b(a(a(x1))) | (3) |
| c(a(x1)) | → | a(x1) | (4) |
| c(b(c(a(x1)))) | → | c(c(b(c(x1)))) | (5) |
| c(x1) | → | a(a(b(x1))) | (6) |
{c(☐), a(☐), b(☐)}
We obtain the transformed TRS| c(b(c(a(x1)))) | → | c(c(b(c(x1)))) | (5) |
| c(c(a(x1))) | → | c(a(x1)) | (7) |
| a(c(a(x1))) | → | a(a(x1)) | (8) |
| b(c(a(x1))) | → | b(a(x1)) | (9) |
| c(c(x1)) | → | c(a(a(b(x1)))) | (10) |
| a(c(x1)) | → | a(a(a(b(x1)))) | (11) |
| b(c(x1)) | → | b(a(a(b(x1)))) | (12) |
Root-labeling is applied.
We obtain the labeled TRS| cb(bc(ca(ac(x1)))) | → | cc(cb(bc(cc(x1)))) | (13) |
| cb(bc(ca(ab(x1)))) | → | cc(cb(bc(cb(x1)))) | (14) |
| cb(bc(ca(aa(x1)))) | → | cc(cb(bc(ca(x1)))) | (15) |
| cc(ca(ac(x1))) | → | ca(ac(x1)) | (16) |
| cc(ca(ab(x1))) | → | ca(ab(x1)) | (17) |
| cc(ca(aa(x1))) | → | ca(aa(x1)) | (18) |
| ac(ca(ac(x1))) | → | aa(ac(x1)) | (19) |
| ac(ca(ab(x1))) | → | aa(ab(x1)) | (20) |
| ac(ca(aa(x1))) | → | aa(aa(x1)) | (21) |
| bc(ca(ac(x1))) | → | ba(ac(x1)) | (22) |
| bc(ca(ab(x1))) | → | ba(ab(x1)) | (23) |
| bc(ca(aa(x1))) | → | ba(aa(x1)) | (24) |
| cc(cc(x1)) | → | ca(aa(ab(bc(x1)))) | (25) |
| cc(cb(x1)) | → | ca(aa(ab(bb(x1)))) | (26) |
| cc(ca(x1)) | → | ca(aa(ab(ba(x1)))) | (27) |
| ac(cc(x1)) | → | aa(aa(ab(bc(x1)))) | (28) |
| ac(cb(x1)) | → | aa(aa(ab(bb(x1)))) | (29) |
| ac(ca(x1)) | → | aa(aa(ab(ba(x1)))) | (30) |
| bc(cc(x1)) | → | ba(aa(ab(bc(x1)))) | (31) |
| bc(cb(x1)) | → | ba(aa(ab(bb(x1)))) | (32) |
| bc(ca(x1)) | → | ba(aa(ab(ba(x1)))) | (33) |
| [cb(x1)] | = | 1 · x1 |
| [bc(x1)] | = | 1 · x1 |
| [ca(x1)] | = | 1 · x1 |
| [ac(x1)] | = | 1 · x1 + 1 |
| [cc(x1)] | = | 1 · x1 |
| [ab(x1)] | = | 1 · x1 |
| [aa(x1)] | = | 1 · x1 |
| [ba(x1)] | = | 1 · x1 |
| [bb(x1)] | = | 1 · x1 |
| cb(bc(ca(ac(x1)))) | → | cc(cb(bc(cc(x1)))) | (13) |
| ac(ca(ac(x1))) | → | aa(ac(x1)) | (19) |
| ac(ca(ab(x1))) | → | aa(ab(x1)) | (20) |
| ac(ca(aa(x1))) | → | aa(aa(x1)) | (21) |
| ac(cc(x1)) | → | aa(aa(ab(bc(x1)))) | (28) |
| ac(cb(x1)) | → | aa(aa(ab(bb(x1)))) | (29) |
| ac(ca(x1)) | → | aa(aa(ab(ba(x1)))) | (30) |
| cb#(bc(ca(ab(x1)))) | → | cc#(cb(bc(cb(x1)))) | (34) |
| cb#(bc(ca(ab(x1)))) | → | cb#(bc(cb(x1))) | (35) |
| cb#(bc(ca(ab(x1)))) | → | bc#(cb(x1)) | (36) |
| cb#(bc(ca(ab(x1)))) | → | cb#(x1) | (37) |
| cb#(bc(ca(aa(x1)))) | → | cc#(cb(bc(ca(x1)))) | (38) |
| cb#(bc(ca(aa(x1)))) | → | cb#(bc(ca(x1))) | (39) |
| cb#(bc(ca(aa(x1)))) | → | bc#(ca(x1)) | (40) |
| cc#(cc(x1)) | → | bc#(x1) | (41) |
| bc#(cc(x1)) | → | bc#(x1) | (42) |
The dependency pairs are split into 2 components.
| cb#(bc(ca(ab(x1)))) | → | cb#(x1) | (37) |
| cb#(bc(ca(ab(x1)))) | → | cb#(bc(cb(x1))) | (35) |
| cb#(bc(ca(aa(x1)))) | → | cb#(bc(ca(x1))) | (39) |
| [cb#(x1)] | = |
|
||||||||||||||||||
| [bc(x1)] | = |
|
||||||||||||||||||
| [ca(x1)] | = |
|
||||||||||||||||||
| [ab(x1)] | = |
|
||||||||||||||||||
| [cb(x1)] | = |
|
||||||||||||||||||
| [aa(x1)] | = |
|
||||||||||||||||||
| [cc(x1)] | = |
|
||||||||||||||||||
| [ac(x1)] | = |
|
||||||||||||||||||
| [ba(x1)] | = |
|
||||||||||||||||||
| [bb(x1)] | = |
|
| cb#(bc(ca(aa(x1)))) | → | cb#(bc(ca(x1))) | (39) |
| [cb#(x1)] | = | 1 · x1 |
| [bc(x1)] | = | 1 + 1 · x1 |
| [ca(x1)] | = | 1 · x1 |
| [ab(x1)] | = | 1 · x1 |
| [cb(x1)] | = | 0 |
| [cc(x1)] | = | 1 · x1 |
| [aa(x1)] | = | 0 |
| [ac(x1)] | = | 1 · x1 |
| [ba(x1)] | = | 0 |
| [bb(x1)] | = | 1 · x1 |
| cb#(bc(ca(ab(x1)))) | → | cb#(x1) | (37) |
| [cb#(x1)] | = | 1 · x1 |
| [bc(x1)] | = | 1 · x1 |
| [ca(x1)] | = | 1 · x1 |
| [ab(x1)] | = | 1 |
| [cb(x1)] | = | 0 |
| [cc(x1)] | = | 1 · x1 |
| [aa(x1)] | = | 0 |
| [ac(x1)] | = | 1 · x1 |
| [ba(x1)] | = | 0 |
| [bb(x1)] | = | 1 · x1 |
| cb#(bc(ca(ab(x1)))) | → | cb#(bc(cb(x1))) | (35) |
There are no pairs anymore.
| bc#(cc(x1)) | → | bc#(x1) | (42) |
| [cc(x1)] | = | 1 · x1 |
| [bc#(x1)] | = | 1 · x1 |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| bc#(cc(x1)) | → | bc#(x1) | (42) |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.