The rewrite relation of the following TRS is considered.
a(c(x1)) | → | a(x1) | (1) |
a(c(b(c(x1)))) | → | c(b(c(c(x1)))) | (2) |
c(x1) | → | b(a(a(x1))) | (3) |
c(a(x1)) | → | a(x1) | (4) |
c(b(c(a(x1)))) | → | c(c(b(c(x1)))) | (5) |
c(x1) | → | a(a(b(x1))) | (6) |
{c(☐), a(☐), b(☐)}
We obtain the transformed TRSc(b(c(a(x1)))) | → | c(c(b(c(x1)))) | (5) |
c(c(a(x1))) | → | c(a(x1)) | (7) |
a(c(a(x1))) | → | a(a(x1)) | (8) |
b(c(a(x1))) | → | b(a(x1)) | (9) |
c(c(x1)) | → | c(a(a(b(x1)))) | (10) |
a(c(x1)) | → | a(a(a(b(x1)))) | (11) |
b(c(x1)) | → | b(a(a(b(x1)))) | (12) |
Root-labeling is applied.
We obtain the labeled TRScb(bc(ca(ac(x1)))) | → | cc(cb(bc(cc(x1)))) | (13) |
cb(bc(ca(ab(x1)))) | → | cc(cb(bc(cb(x1)))) | (14) |
cb(bc(ca(aa(x1)))) | → | cc(cb(bc(ca(x1)))) | (15) |
cc(ca(ac(x1))) | → | ca(ac(x1)) | (16) |
cc(ca(ab(x1))) | → | ca(ab(x1)) | (17) |
cc(ca(aa(x1))) | → | ca(aa(x1)) | (18) |
ac(ca(ac(x1))) | → | aa(ac(x1)) | (19) |
ac(ca(ab(x1))) | → | aa(ab(x1)) | (20) |
ac(ca(aa(x1))) | → | aa(aa(x1)) | (21) |
bc(ca(ac(x1))) | → | ba(ac(x1)) | (22) |
bc(ca(ab(x1))) | → | ba(ab(x1)) | (23) |
bc(ca(aa(x1))) | → | ba(aa(x1)) | (24) |
cc(cc(x1)) | → | ca(aa(ab(bc(x1)))) | (25) |
cc(cb(x1)) | → | ca(aa(ab(bb(x1)))) | (26) |
cc(ca(x1)) | → | ca(aa(ab(ba(x1)))) | (27) |
ac(cc(x1)) | → | aa(aa(ab(bc(x1)))) | (28) |
ac(cb(x1)) | → | aa(aa(ab(bb(x1)))) | (29) |
ac(ca(x1)) | → | aa(aa(ab(ba(x1)))) | (30) |
bc(cc(x1)) | → | ba(aa(ab(bc(x1)))) | (31) |
bc(cb(x1)) | → | ba(aa(ab(bb(x1)))) | (32) |
bc(ca(x1)) | → | ba(aa(ab(ba(x1)))) | (33) |
[cb(x1)] | = | 1 · x1 |
[bc(x1)] | = | 1 · x1 |
[ca(x1)] | = | 1 · x1 |
[ac(x1)] | = | 1 · x1 + 1 |
[cc(x1)] | = | 1 · x1 |
[ab(x1)] | = | 1 · x1 |
[aa(x1)] | = | 1 · x1 |
[ba(x1)] | = | 1 · x1 |
[bb(x1)] | = | 1 · x1 |
cb(bc(ca(ac(x1)))) | → | cc(cb(bc(cc(x1)))) | (13) |
ac(ca(ac(x1))) | → | aa(ac(x1)) | (19) |
ac(ca(ab(x1))) | → | aa(ab(x1)) | (20) |
ac(ca(aa(x1))) | → | aa(aa(x1)) | (21) |
ac(cc(x1)) | → | aa(aa(ab(bc(x1)))) | (28) |
ac(cb(x1)) | → | aa(aa(ab(bb(x1)))) | (29) |
ac(ca(x1)) | → | aa(aa(ab(ba(x1)))) | (30) |
cb#(bc(ca(ab(x1)))) | → | cc#(cb(bc(cb(x1)))) | (34) |
cb#(bc(ca(ab(x1)))) | → | cb#(bc(cb(x1))) | (35) |
cb#(bc(ca(ab(x1)))) | → | bc#(cb(x1)) | (36) |
cb#(bc(ca(ab(x1)))) | → | cb#(x1) | (37) |
cb#(bc(ca(aa(x1)))) | → | cc#(cb(bc(ca(x1)))) | (38) |
cb#(bc(ca(aa(x1)))) | → | cb#(bc(ca(x1))) | (39) |
cb#(bc(ca(aa(x1)))) | → | bc#(ca(x1)) | (40) |
cc#(cc(x1)) | → | bc#(x1) | (41) |
bc#(cc(x1)) | → | bc#(x1) | (42) |
The dependency pairs are split into 2 components.
cb#(bc(ca(ab(x1)))) | → | cb#(x1) | (37) |
cb#(bc(ca(ab(x1)))) | → | cb#(bc(cb(x1))) | (35) |
cb#(bc(ca(aa(x1)))) | → | cb#(bc(ca(x1))) | (39) |
[cb#(x1)] | = |
|
||||||||||||||||||
[bc(x1)] | = |
|
||||||||||||||||||
[ca(x1)] | = |
|
||||||||||||||||||
[ab(x1)] | = |
|
||||||||||||||||||
[cb(x1)] | = |
|
||||||||||||||||||
[aa(x1)] | = |
|
||||||||||||||||||
[cc(x1)] | = |
|
||||||||||||||||||
[ac(x1)] | = |
|
||||||||||||||||||
[ba(x1)] | = |
|
||||||||||||||||||
[bb(x1)] | = |
|
cb#(bc(ca(aa(x1)))) | → | cb#(bc(ca(x1))) | (39) |
[cb#(x1)] | = | 1 · x1 |
[bc(x1)] | = | 1 + 1 · x1 |
[ca(x1)] | = | 1 · x1 |
[ab(x1)] | = | 1 · x1 |
[cb(x1)] | = | 0 |
[cc(x1)] | = | 1 · x1 |
[aa(x1)] | = | 0 |
[ac(x1)] | = | 1 · x1 |
[ba(x1)] | = | 0 |
[bb(x1)] | = | 1 · x1 |
cb#(bc(ca(ab(x1)))) | → | cb#(x1) | (37) |
[cb#(x1)] | = | 1 · x1 |
[bc(x1)] | = | 1 · x1 |
[ca(x1)] | = | 1 · x1 |
[ab(x1)] | = | 1 |
[cb(x1)] | = | 0 |
[cc(x1)] | = | 1 · x1 |
[aa(x1)] | = | 0 |
[ac(x1)] | = | 1 · x1 |
[ba(x1)] | = | 0 |
[bb(x1)] | = | 1 · x1 |
cb#(bc(ca(ab(x1)))) | → | cb#(bc(cb(x1))) | (35) |
There are no pairs anymore.
bc#(cc(x1)) | → | bc#(x1) | (42) |
[cc(x1)] | = | 1 · x1 |
[bc#(x1)] | = | 1 · x1 |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
bc#(cc(x1)) | → | bc#(x1) | (42) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.