The rewrite relation of the following TRS is considered.
| a(a(c(x1))) | → | b(c(b(a(x1)))) | (1) |
| b(x1) | → | d(a(x1)) | (2) |
| b(a(c(d(x1)))) | → | a(a(a(x1))) | (3) |
| c(x1) | → | x1 | (4) |
| b(x1) | → | c(d(x1)) | (5) |
| c(a(a(x1))) | → | a(b(c(b(x1)))) | (6) |
| b(x1) | → | a(d(x1)) | (7) |
| d(c(a(b(x1)))) | → | a(a(a(x1))) | (8) |
| c(x1) | → | x1 | (4) |
| b(x1) | → | d(c(x1)) | (9) |
| c#(a(a(x1))) | → | b#(c(b(x1))) | (10) |
| c#(a(a(x1))) | → | c#(b(x1)) | (11) |
| c#(a(a(x1))) | → | b#(x1) | (12) |
| b#(x1) | → | d#(x1) | (13) |
| b#(x1) | → | d#(c(x1)) | (14) |
| b#(x1) | → | c#(x1) | (15) |
The dependency pairs are split into 1 component.
| b#(x1) | → | c#(x1) | (15) |
| c#(a(a(x1))) | → | b#(c(b(x1))) | (10) |
| c#(a(a(x1))) | → | c#(b(x1)) | (11) |
| c#(a(a(x1))) | → | b#(x1) | (12) |
| [b#(x1)] | = |
|
||||||||||||||||||
| [c#(x1)] | = |
|
||||||||||||||||||
| [a(x1)] | = |
|
||||||||||||||||||
| [c(x1)] | = |
|
||||||||||||||||||
| [b(x1)] | = |
|
||||||||||||||||||
| [d(x1)] | = |
|
| c#(a(a(x1))) | → | c#(b(x1)) | (11) |
| [b#(x1)] | = |
|
||||||||||||||||||
| [c#(x1)] | = |
|
||||||||||||||||||
| [a(x1)] | = |
|
||||||||||||||||||
| [c(x1)] | = |
|
||||||||||||||||||
| [b(x1)] | = |
|
||||||||||||||||||
| [d(x1)] | = |
|
| c#(a(a(x1))) | → | b#(c(b(x1))) | (10) |
| [a(x1)] | = | 1 · x1 |
| [c#(x1)] | = | 1 · x1 |
| [b#(x1)] | = | 1 · x1 |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| c#(a(a(x1))) | → | b#(x1) | (12) |
| 1 | > | 1 | |
| b#(x1) | → | c#(x1) | (15) |
| 1 | ≥ | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.