The rewrite relation of the following TRS is considered.
| a(a(a(b(x1)))) | → | b(a(b(a(x1)))) | (1) |
| b(b(a(x1))) | → | a(a(a(b(x1)))) | (2) |
| a#(a(a(b(x1)))) | → | b#(a(b(a(x1)))) | (3) |
| a#(a(a(b(x1)))) | → | a#(b(a(x1))) | (4) |
| a#(a(a(b(x1)))) | → | b#(a(x1)) | (5) |
| a#(a(a(b(x1)))) | → | a#(x1) | (6) |
| b#(b(a(x1))) | → | a#(a(a(b(x1)))) | (7) |
| b#(b(a(x1))) | → | a#(a(b(x1))) | (8) |
| b#(b(a(x1))) | → | a#(b(x1)) | (9) |
| b#(b(a(x1))) | → | b#(x1) | (10) |
| [a#(x1)] | = |
|
||||||||||||||||||
| [a(x1)] | = |
|
||||||||||||||||||
| [b(x1)] | = |
|
||||||||||||||||||
| [b#(x1)] | = |
|
| a#(a(a(b(x1)))) | → | b#(a(b(a(x1)))) | (3) |
| [a#(x1)] | = |
|
||||||||||||||||||
| [a(x1)] | = |
|
||||||||||||||||||
| [b(x1)] | = |
|
||||||||||||||||||
| [b#(x1)] | = |
|
| a#(a(a(b(x1)))) | → | a#(b(a(x1))) | (4) |
| b#(b(a(x1))) | → | a#(b(x1)) | (9) |
| [a#(x1)] | = |
|
||||||||||||||||||
| [a(x1)] | = |
|
||||||||||||||||||
| [b(x1)] | = |
|
||||||||||||||||||
| [b#(x1)] | = |
|
| b#(b(a(x1))) | → | a#(a(b(x1))) | (8) |
| [a#(x1)] | = |
|
||||||||||||||||||||||||||||||||||||||||||||||||
| [a(x1)] | = |
|
||||||||||||||||||||||||||||||||||||||||||||||||
| [b(x1)] | = |
|
||||||||||||||||||||||||||||||||||||||||||||||||
| [b#(x1)] | = |
|
| a#(a(a(b(x1)))) | → | a#(x1) | (6) |
| [a#(x1)] | = |
|
||||||||||||||||||||||||||||||||||||
| [a(x1)] | = |
|
||||||||||||||||||||||||||||||||||||
| [b(x1)] | = |
|
||||||||||||||||||||||||||||||||||||
| [b#(x1)] | = |
|
| a#(a(a(b(x1)))) | → | b#(a(x1)) | (5) |
The dependency pairs are split into 1 component.
| b#(b(a(x1))) | → | b#(x1) | (10) |
| [b(x1)] | = | 1 · x1 |
| [a(x1)] | = | 1 · x1 |
| [b#(x1)] | = | 1 · x1 |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| b#(b(a(x1))) | → | b#(x1) | (10) |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.