The rewrite relation of the following TRS is considered.
v(s(x1)) | → | s(p(p(s(s(s(s(s(s(s(s(w(p(p(s(s(p(s(p(s(x1)))))))))))))))))))) | (1) |
v(0(x1)) | → | p(p(s(s(0(p(p(s(s(s(s(s(x1)))))))))))) | (2) |
w(s(x1)) | → | s(s(s(s(s(s(p(p(s(s(v(p(p(s(s(s(p(p(s(s(x1)))))))))))))))))))) | (3) |
w(0(x1)) | → | p(s(p(p(p(p(p(p(p(p(s(s(0(s(s(s(s(s(s(x1))))))))))))))))))) | (4) |
p(p(s(x1))) | → | p(x1) | (5) |
p(s(x1)) | → | x1 | (6) |
p(0(x1)) | → | 0(s(s(s(s(s(s(s(p(s(x1)))))))))) | (7) |
[v(x1)] | = | 1 · x1 + 1 |
[s(x1)] | = | 1 · x1 |
[p(x1)] | = | 1 · x1 |
[w(x1)] | = | 1 · x1 + 1 |
[0(x1)] | = | 1 · x1 |
v(0(x1)) | → | p(p(s(s(0(p(p(s(s(s(s(s(x1)))))))))))) | (2) |
w(0(x1)) | → | p(s(p(p(p(p(p(p(p(p(s(s(0(s(s(s(s(s(s(x1))))))))))))))))))) | (4) |
v#(s(x1)) | → | p#(p(s(s(s(s(s(s(s(s(w(p(p(s(s(p(s(p(s(x1))))))))))))))))))) | (8) |
v#(s(x1)) | → | p#(s(s(s(s(s(s(s(s(w(p(p(s(s(p(s(p(s(x1)))))))))))))))))) | (9) |
v#(s(x1)) | → | w#(p(p(s(s(p(s(p(s(x1))))))))) | (10) |
v#(s(x1)) | → | p#(p(s(s(p(s(p(s(x1)))))))) | (11) |
v#(s(x1)) | → | p#(s(s(p(s(p(s(x1))))))) | (12) |
v#(s(x1)) | → | p#(s(p(s(x1)))) | (13) |
v#(s(x1)) | → | p#(s(x1)) | (14) |
w#(s(x1)) | → | p#(p(s(s(v(p(p(s(s(s(p(p(s(s(x1)))))))))))))) | (15) |
w#(s(x1)) | → | p#(s(s(v(p(p(s(s(s(p(p(s(s(x1))))))))))))) | (16) |
w#(s(x1)) | → | v#(p(p(s(s(s(p(p(s(s(x1)))))))))) | (17) |
w#(s(x1)) | → | p#(p(s(s(s(p(p(s(s(x1))))))))) | (18) |
w#(s(x1)) | → | p#(s(s(s(p(p(s(s(x1)))))))) | (19) |
w#(s(x1)) | → | p#(p(s(s(x1)))) | (20) |
w#(s(x1)) | → | p#(s(s(x1))) | (21) |
p#(p(s(x1))) | → | p#(x1) | (22) |
p#(0(x1)) | → | p#(s(x1)) | (23) |
The dependency pairs are split into 2 components.
v#(s(x1)) | → | w#(p(p(s(s(p(s(p(s(x1))))))))) | (10) |
w#(s(x1)) | → | v#(p(p(s(s(s(p(p(s(s(x1)))))))))) | (17) |
20
Hence, it suffices to show innermost termination in the following.We restrict the rewrite rules to the following usable rules of the DP problem.
p(s(x1)) | → | x1 | (6) |
p(0(x1)) | → | 0(s(s(s(s(s(s(s(p(s(x1)))))))))) | (7) |
We restrict the innermost strategy to the following left hand sides.
p(s(x0)) |
p(0(x0)) |
[v#(x1)] | = | -2 + x1 |
[w#(x1)] | = | x1 |
[p(x1)] | = | -2 + x1 |
[s(x1)] | = | 2 + x1 |
[0(x1)] | = | 0 |
w#(s(x1)) | → | v#(p(p(s(s(s(p(p(s(s(x1)))))))))) | (17) |
[v#(x1)] | = | 1 + 1 · x1 |
[s(x1)] | = | 1 + 1 · x1 |
[w#(x1)] | = | 1 |
[p(x1)] | = | 1 + 1 · x1 |
[0(x1)] | = | 1 |
v#(s(x1)) | → | w#(p(p(s(s(p(s(p(s(x1))))))))) | (10) |
There are no pairs anymore.
p#(p(s(x1))) | → | p#(x1) | (22) |
[p(x1)] | = | 1 · x1 |
[s(x1)] | = | 1 · x1 |
[p#(x1)] | = | 1 · x1 |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
p#(p(s(x1))) | → | p#(x1) | (22) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.