The rewrite relation of the following TRS is considered.
twoto(0(x1)) | → | p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))) | (1) |
twoto(s(x1)) | → | p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) | (2) |
twice(0(x1)) | → | p(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) | (3) |
twice(s(x1)) | → | s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))))) | (4) |
p(p(s(x1))) | → | p(x1) | (5) |
p(s(x1)) | → | x1 | (6) |
p(0(x1)) | → | 0(s(s(s(s(p(s(x1))))))) | (7) |
0(x1) | → | x1 | (8) |
[twoto(x1)] | = | 1 · x1 + 1 |
[0(x1)] | = | 1 · x1 + 1 |
[p(x1)] | = | 1 · x1 |
[s(x1)] | = | 1 · x1 |
[twice(x1)] | = | 1 · x1 |
twoto(0(x1)) | → | p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x1)))))))))))))))) | (1) |
0(x1) | → | x1 | (8) |
twoto#(s(x1)) | → | p#(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))))))) | (9) |
twoto#(s(x1)) | → | p#(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))))))) | (10) |
twoto#(s(x1)) | → | p#(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))))) | (11) |
twoto#(s(x1)) | → | p#(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))))))))) | (12) |
twoto#(s(x1)) | → | p#(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))))))) | (13) |
twoto#(s(x1)) | → | twice#(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))))) | (14) |
twoto#(s(x1)) | → | p#(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))))))) | (15) |
twoto#(s(x1)) | → | p#(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x1)))))))))))))) | (16) |
twoto#(s(x1)) | → | p#(p(p(s(s(s(twoto(p(s(p(s(x1))))))))))) | (17) |
twoto#(s(x1)) | → | p#(p(s(s(s(twoto(p(s(p(s(x1)))))))))) | (18) |
twoto#(s(x1)) | → | p#(s(s(s(twoto(p(s(p(s(x1))))))))) | (19) |
twoto#(s(x1)) | → | twoto#(p(s(p(s(x1))))) | (20) |
twoto#(s(x1)) | → | p#(s(p(s(x1)))) | (21) |
twoto#(s(x1)) | → | p#(s(x1)) | (22) |
twice#(0(x1)) | → | p#(s(p(s(0(s(p(s(s(s(s(p(s(x1))))))))))))) | (23) |
twice#(0(x1)) | → | p#(s(0(s(p(s(s(s(s(p(s(x1))))))))))) | (24) |
twice#(0(x1)) | → | p#(s(s(s(s(p(s(x1))))))) | (25) |
twice#(0(x1)) | → | p#(s(x1)) | (26) |
twice#(s(x1)) | → | p#(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))))) | (27) |
twice#(s(x1)) | → | p#(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))))) | (28) |
twice#(s(x1)) | → | p#(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1)))))))))))))))) | (29) |
twice#(s(x1)) | → | p#(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x1))))))))))))))) | (30) |
twice#(s(x1)) | → | twice#(p(s(p(s(p(s(p(s(x1))))))))) | (31) |
twice#(s(x1)) | → | p#(s(p(s(p(s(p(s(x1)))))))) | (32) |
twice#(s(x1)) | → | p#(s(p(s(p(s(x1)))))) | (33) |
twice#(s(x1)) | → | p#(s(p(s(x1)))) | (34) |
twice#(s(x1)) | → | p#(s(x1)) | (35) |
p#(p(s(x1))) | → | p#(x1) | (36) |
p#(0(x1)) | → | p#(s(x1)) | (37) |
The dependency pairs are split into 3 components.
twoto#(s(x1)) | → | twoto#(p(s(p(s(x1))))) | (20) |
20
Hence, it suffices to show innermost termination in the following.We restrict the rewrite rules to the following usable rules of the DP problem.
p(s(x1)) | → | x1 | (6) |
We restrict the innermost strategy to the following left hand sides.
p(s(x0)) |
p(0(x0)) |
[twoto#(x1)] | = | 2 + x1 |
[p(x1)] | = | -1 + x1 |
[s(x1)] | = | 1 + x1 |
twoto#(s(x1)) | → | twoto#(p(s(p(s(x1))))) | (20) |
There are no pairs anymore.
twice#(s(x1)) | → | twice#(p(s(p(s(p(s(p(s(x1))))))))) | (31) |
20
Hence, it suffices to show innermost termination in the following.We restrict the rewrite rules to the following usable rules of the DP problem.
p(s(x1)) | → | x1 | (6) |
We restrict the innermost strategy to the following left hand sides.
p(s(x0)) |
p(0(x0)) |
[twice#(x1)] | = | -1 + x1 |
[p(x1)] | = | -2 + x1 |
[s(x1)] | = | 2 + x1 |
twice#(s(x1)) | → | twice#(p(s(p(s(p(s(p(s(x1))))))))) | (31) |
There are no pairs anymore.
p#(p(s(x1))) | → | p#(x1) | (36) |
[p(x1)] | = | 1 · x1 |
[s(x1)] | = | 1 · x1 |
[p#(x1)] | = | 1 · x1 |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
p#(p(s(x1))) | → | p#(x1) | (36) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.