The rewrite relation of the following TRS is considered.
| i(0(x1)) | → | p(s(p(s(0(p(s(p(s(x1))))))))) | (1) |
| i(s(x1)) | → | p(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1)))))))))))))))))) | (2) |
| j(0(x1)) | → | p(s(p(p(s(s(0(p(s(p(s(x1))))))))))) | (3) |
| j(s(x1)) | → | s(s(s(s(p(p(s(s(i(p(s(p(s(x1))))))))))))) | (4) |
| p(p(s(x1))) | → | p(x1) | (5) |
| p(s(x1)) | → | x1 | (6) |
| p(0(x1)) | → | 0(s(s(s(s(s(s(s(s(x1))))))))) | (7) |
| [i(x1)] | = | 1 · x1 + 1 |
| [0(x1)] | = | 1 · x1 |
| [p(x1)] | = | 1 · x1 |
| [s(x1)] | = | 1 · x1 |
| [j(x1)] | = | 1 · x1 + 1 |
| i(0(x1)) | → | p(s(p(s(0(p(s(p(s(x1))))))))) | (1) |
| j(0(x1)) | → | p(s(p(p(s(s(0(p(s(p(s(x1))))))))))) | (3) |
| i#(s(x1)) | → | p#(s(p(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1)))))))))))))))))) | (8) |
| i#(s(x1)) | → | p#(s(s(j(p(s(p(s(p(p(p(p(s(s(s(s(x1)))))))))))))))) | (9) |
| i#(s(x1)) | → | j#(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))) | (10) |
| i#(s(x1)) | → | p#(s(p(s(p(p(p(p(s(s(s(s(x1)))))))))))) | (11) |
| i#(s(x1)) | → | p#(s(p(p(p(p(s(s(s(s(x1)))))))))) | (12) |
| i#(s(x1)) | → | p#(p(p(p(s(s(s(s(x1)))))))) | (13) |
| i#(s(x1)) | → | p#(p(p(s(s(s(s(x1))))))) | (14) |
| i#(s(x1)) | → | p#(p(s(s(s(s(x1)))))) | (15) |
| i#(s(x1)) | → | p#(s(s(s(s(x1))))) | (16) |
| j#(s(x1)) | → | p#(p(s(s(i(p(s(p(s(x1))))))))) | (17) |
| j#(s(x1)) | → | p#(s(s(i(p(s(p(s(x1)))))))) | (18) |
| j#(s(x1)) | → | i#(p(s(p(s(x1))))) | (19) |
| j#(s(x1)) | → | p#(s(p(s(x1)))) | (20) |
| j#(s(x1)) | → | p#(s(x1)) | (21) |
| p#(p(s(x1))) | → | p#(x1) | (22) |
The dependency pairs are split into 2 components.
| i#(s(x1)) | → | j#(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))) | (10) |
| j#(s(x1)) | → | i#(p(s(p(s(x1))))) | (19) |
20
Hence, it suffices to show innermost termination in the following.We restrict the rewrite rules to the following usable rules of the DP problem.
| p(s(x1)) | → | x1 | (6) |
| p(0(x1)) | → | 0(s(s(s(s(s(s(s(s(x1))))))))) | (7) |
We restrict the innermost strategy to the following left hand sides.
| p(s(x0)) |
| p(0(x0)) |
| [i#(x1)] | = | -2 + x1 |
| [j#(x1)] | = | -1 + x1 |
| [p(x1)] | = | -2 + x1 |
| [s(x1)] | = | 2 + x1 |
| [0(x1)] | = | -2 |
| j#(s(x1)) | → | i#(p(s(p(s(x1))))) | (19) |
| [i#(x1)] | = | 1 + 1 · x1 |
| [s(x1)] | = | 1 + 1 · x1 |
| [j#(x1)] | = | 0 |
| [p(x1)] | = | 1 · x1 |
| [0(x1)] | = | 1 |
| i#(s(x1)) | → | j#(p(s(p(s(p(p(p(p(s(s(s(s(x1))))))))))))) | (10) |
There are no pairs anymore.
| p#(p(s(x1))) | → | p#(x1) | (22) |
| [p(x1)] | = | 1 · x1 |
| [s(x1)] | = | 1 · x1 |
| [p#(x1)] | = | 1 · x1 |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| p#(p(s(x1))) | → | p#(x1) | (22) |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.