The rewrite relation of the following TRS is considered.
| a(a(x1)) | → | c(b(a(b(a(x1))))) | (1) |
| b(a(b(x1))) | → | b(x1) | (2) |
| a(a(a(x1))) | → | c(c(a(x1))) | (3) |
| c(c(x1)) | → | a(b(c(b(a(x1))))) | (4) |
| a(c(a(x1))) | → | c(c(a(x1))) | (5) |
| c(a(c(x1))) | → | a(a(c(x1))) | (6) |
| a#(a(x1)) | → | c#(b(a(b(a(x1))))) | (7) |
| a#(a(x1)) | → | b#(a(b(a(x1)))) | (8) |
| a#(a(x1)) | → | a#(b(a(x1))) | (9) |
| a#(a(x1)) | → | b#(a(x1)) | (10) |
| a#(a(a(x1))) | → | c#(c(a(x1))) | (11) |
| a#(a(a(x1))) | → | c#(a(x1)) | (12) |
| c#(c(x1)) | → | a#(b(c(b(a(x1))))) | (13) |
| c#(c(x1)) | → | b#(c(b(a(x1)))) | (14) |
| c#(c(x1)) | → | c#(b(a(x1))) | (15) |
| c#(c(x1)) | → | b#(a(x1)) | (16) |
| c#(c(x1)) | → | a#(x1) | (17) |
| a#(c(a(x1))) | → | c#(c(a(x1))) | (18) |
| c#(a(c(x1))) | → | a#(a(c(x1))) | (19) |
The dependency pairs are split into 1 component.
| c#(c(x1)) | → | a#(b(c(b(a(x1))))) | (13) |
| a#(a(x1)) | → | c#(b(a(b(a(x1))))) | (7) |
| c#(c(x1)) | → | c#(b(a(x1))) | (15) |
| c#(c(x1)) | → | a#(x1) | (17) |
| a#(a(x1)) | → | a#(b(a(x1))) | (9) |
| a#(a(a(x1))) | → | c#(c(a(x1))) | (11) |
| c#(a(c(x1))) | → | a#(a(c(x1))) | (19) |
| a#(a(a(x1))) | → | c#(a(x1)) | (12) |
| a#(c(a(x1))) | → | c#(c(a(x1))) | (18) |
| [c#(x1)] | = | 1 + 1 · x1 |
| [c(x1)] | = | 1 + 1 · x1 |
| [a#(x1)] | = | 1 + 1 · x1 |
| [b(x1)] | = | 0 |
| [a(x1)] | = | 1 + 1 · x1 |
| c#(c(x1)) | → | a#(b(c(b(a(x1))))) | (13) |
| a#(a(x1)) | → | c#(b(a(b(a(x1))))) | (7) |
| c#(c(x1)) | → | c#(b(a(x1))) | (15) |
| c#(c(x1)) | → | a#(x1) | (17) |
| a#(a(x1)) | → | a#(b(a(x1))) | (9) |
| a#(a(a(x1))) | → | c#(a(x1)) | (12) |
| [a#(x1)] | = |
|
||||||||||||||||||
| [a(x1)] | = |
|
||||||||||||||||||
| [c#(x1)] | = |
|
||||||||||||||||||
| [c(x1)] | = |
|
||||||||||||||||||
| [b(x1)] | = |
|
| a#(a(a(x1))) | → | c#(c(a(x1))) | (11) |
| a#(c(a(x1))) | → | c#(c(a(x1))) | (18) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| c#(a(c(x1))) | → | a#(a(c(x1))) | (19) |
| 1 | ≥ | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.