The rewrite relation of the following TRS is considered.
| a(c(x1)) | → | a(x1) | (1) |
| d(a(x1)) | → | a(c(b(c(d(x1))))) | (2) |
| a(c(b(c(x1)))) | → | c(b(c(c(x1)))) | (3) |
| c(x1) | → | b(a(a(x1))) | (4) |
| d(c(x1)) | → | a(c(d(a(x1)))) | (5) |
| c(a(x1)) | → | a(x1) | (6) |
| a(d(x1)) | → | d(c(b(c(a(x1))))) | (7) |
| c(b(c(a(x1)))) | → | c(c(b(c(x1)))) | (8) |
| c(x1) | → | a(a(b(x1))) | (9) |
| c(d(x1)) | → | a(d(c(a(x1)))) | (10) |
{c(☐), a(☐), d(☐), b(☐)}
We obtain the transformed TRS| c(b(c(a(x1)))) | → | c(c(b(c(x1)))) | (8) |
| c(c(a(x1))) | → | c(a(x1)) | (11) |
| a(c(a(x1))) | → | a(a(x1)) | (12) |
| d(c(a(x1))) | → | d(a(x1)) | (13) |
| b(c(a(x1))) | → | b(a(x1)) | (14) |
| c(a(d(x1))) | → | c(d(c(b(c(a(x1)))))) | (15) |
| a(a(d(x1))) | → | a(d(c(b(c(a(x1)))))) | (16) |
| d(a(d(x1))) | → | d(d(c(b(c(a(x1)))))) | (17) |
| b(a(d(x1))) | → | b(d(c(b(c(a(x1)))))) | (18) |
| c(c(x1)) | → | c(a(a(b(x1)))) | (19) |
| a(c(x1)) | → | a(a(a(b(x1)))) | (20) |
| d(c(x1)) | → | d(a(a(b(x1)))) | (21) |
| b(c(x1)) | → | b(a(a(b(x1)))) | (22) |
| c(c(d(x1))) | → | c(a(d(c(a(x1))))) | (23) |
| a(c(d(x1))) | → | a(a(d(c(a(x1))))) | (24) |
| d(c(d(x1))) | → | d(a(d(c(a(x1))))) | (25) |
| b(c(d(x1))) | → | b(a(d(c(a(x1))))) | (26) |
Root-labeling is applied.
We obtain the labeled TRS| cb(bc(ca(ac(x1)))) | → | cc(cb(bc(cc(x1)))) | (27) |
| cb(bc(ca(ab(x1)))) | → | cc(cb(bc(cb(x1)))) | (28) |
| cb(bc(ca(aa(x1)))) | → | cc(cb(bc(ca(x1)))) | (29) |
| cb(bc(ca(ad(x1)))) | → | cc(cb(bc(cd(x1)))) | (30) |
| cc(ca(ac(x1))) | → | ca(ac(x1)) | (31) |
| cc(ca(ab(x1))) | → | ca(ab(x1)) | (32) |
| cc(ca(aa(x1))) | → | ca(aa(x1)) | (33) |
| cc(ca(ad(x1))) | → | ca(ad(x1)) | (34) |
| ac(ca(ac(x1))) | → | aa(ac(x1)) | (35) |
| ac(ca(ab(x1))) | → | aa(ab(x1)) | (36) |
| ac(ca(aa(x1))) | → | aa(aa(x1)) | (37) |
| ac(ca(ad(x1))) | → | aa(ad(x1)) | (38) |
| dc(ca(ac(x1))) | → | da(ac(x1)) | (39) |
| dc(ca(ab(x1))) | → | da(ab(x1)) | (40) |
| dc(ca(aa(x1))) | → | da(aa(x1)) | (41) |
| dc(ca(ad(x1))) | → | da(ad(x1)) | (42) |
| bc(ca(ac(x1))) | → | ba(ac(x1)) | (43) |
| bc(ca(ab(x1))) | → | ba(ab(x1)) | (44) |
| bc(ca(aa(x1))) | → | ba(aa(x1)) | (45) |
| bc(ca(ad(x1))) | → | ba(ad(x1)) | (46) |
| ca(ad(dc(x1))) | → | cd(dc(cb(bc(ca(ac(x1)))))) | (47) |
| ca(ad(db(x1))) | → | cd(dc(cb(bc(ca(ab(x1)))))) | (48) |
| ca(ad(da(x1))) | → | cd(dc(cb(bc(ca(aa(x1)))))) | (49) |
| ca(ad(dd(x1))) | → | cd(dc(cb(bc(ca(ad(x1)))))) | (50) |
| aa(ad(dc(x1))) | → | ad(dc(cb(bc(ca(ac(x1)))))) | (51) |
| aa(ad(db(x1))) | → | ad(dc(cb(bc(ca(ab(x1)))))) | (52) |
| aa(ad(da(x1))) | → | ad(dc(cb(bc(ca(aa(x1)))))) | (53) |
| aa(ad(dd(x1))) | → | ad(dc(cb(bc(ca(ad(x1)))))) | (54) |
| da(ad(dc(x1))) | → | dd(dc(cb(bc(ca(ac(x1)))))) | (55) |
| da(ad(db(x1))) | → | dd(dc(cb(bc(ca(ab(x1)))))) | (56) |
| da(ad(da(x1))) | → | dd(dc(cb(bc(ca(aa(x1)))))) | (57) |
| da(ad(dd(x1))) | → | dd(dc(cb(bc(ca(ad(x1)))))) | (58) |
| ba(ad(dc(x1))) | → | bd(dc(cb(bc(ca(ac(x1)))))) | (59) |
| ba(ad(db(x1))) | → | bd(dc(cb(bc(ca(ab(x1)))))) | (60) |
| ba(ad(da(x1))) | → | bd(dc(cb(bc(ca(aa(x1)))))) | (61) |
| ba(ad(dd(x1))) | → | bd(dc(cb(bc(ca(ad(x1)))))) | (62) |
| cc(cc(x1)) | → | ca(aa(ab(bc(x1)))) | (63) |
| cc(cb(x1)) | → | ca(aa(ab(bb(x1)))) | (64) |
| cc(ca(x1)) | → | ca(aa(ab(ba(x1)))) | (65) |
| cc(cd(x1)) | → | ca(aa(ab(bd(x1)))) | (66) |
| ac(cc(x1)) | → | aa(aa(ab(bc(x1)))) | (67) |
| ac(cb(x1)) | → | aa(aa(ab(bb(x1)))) | (68) |
| ac(ca(x1)) | → | aa(aa(ab(ba(x1)))) | (69) |
| ac(cd(x1)) | → | aa(aa(ab(bd(x1)))) | (70) |
| dc(cc(x1)) | → | da(aa(ab(bc(x1)))) | (71) |
| dc(cb(x1)) | → | da(aa(ab(bb(x1)))) | (72) |
| dc(ca(x1)) | → | da(aa(ab(ba(x1)))) | (73) |
| dc(cd(x1)) | → | da(aa(ab(bd(x1)))) | (74) |
| bc(cc(x1)) | → | ba(aa(ab(bc(x1)))) | (75) |
| bc(cb(x1)) | → | ba(aa(ab(bb(x1)))) | (76) |
| bc(ca(x1)) | → | ba(aa(ab(ba(x1)))) | (77) |
| bc(cd(x1)) | → | ba(aa(ab(bd(x1)))) | (78) |
| cc(cd(dc(x1))) | → | ca(ad(dc(ca(ac(x1))))) | (79) |
| cc(cd(db(x1))) | → | ca(ad(dc(ca(ab(x1))))) | (80) |
| cc(cd(da(x1))) | → | ca(ad(dc(ca(aa(x1))))) | (81) |
| cc(cd(dd(x1))) | → | ca(ad(dc(ca(ad(x1))))) | (82) |
| ac(cd(dc(x1))) | → | aa(ad(dc(ca(ac(x1))))) | (83) |
| ac(cd(db(x1))) | → | aa(ad(dc(ca(ab(x1))))) | (84) |
| ac(cd(da(x1))) | → | aa(ad(dc(ca(aa(x1))))) | (85) |
| ac(cd(dd(x1))) | → | aa(ad(dc(ca(ad(x1))))) | (86) |
| dc(cd(dc(x1))) | → | da(ad(dc(ca(ac(x1))))) | (87) |
| dc(cd(db(x1))) | → | da(ad(dc(ca(ab(x1))))) | (88) |
| dc(cd(da(x1))) | → | da(ad(dc(ca(aa(x1))))) | (89) |
| dc(cd(dd(x1))) | → | da(ad(dc(ca(ad(x1))))) | (90) |
| bc(cd(dc(x1))) | → | ba(ad(dc(ca(ac(x1))))) | (91) |
| bc(cd(db(x1))) | → | ba(ad(dc(ca(ab(x1))))) | (92) |
| bc(cd(da(x1))) | → | ba(ad(dc(ca(aa(x1))))) | (93) |
| bc(cd(dd(x1))) | → | ba(ad(dc(ca(ad(x1))))) | (94) |
| [cb(x1)] | = | 1 · x1 |
| [bc(x1)] | = | 1 · x1 |
| [ca(x1)] | = | 1 · x1 |
| [ac(x1)] | = | 1 · x1 |
| [cc(x1)] | = | 1 · x1 |
| [ab(x1)] | = | 1 · x1 |
| [aa(x1)] | = | 1 · x1 |
| [ad(x1)] | = | 1 · x1 + 1 |
| [cd(x1)] | = | 1 · x1 + 1 |
| [dc(x1)] | = | 1 · x1 |
| [da(x1)] | = | 1 · x1 |
| [ba(x1)] | = | 1 · x1 |
| [db(x1)] | = | 1 · x1 + 1 |
| [dd(x1)] | = | 1 · x1 + 1 |
| [bd(x1)] | = | 1 · x1 |
| [bb(x1)] | = | 1 · x1 |
| ca(ad(db(x1))) | → | cd(dc(cb(bc(ca(ab(x1)))))) | (48) |
| aa(ad(db(x1))) | → | ad(dc(cb(bc(ca(ab(x1)))))) | (52) |
| da(ad(db(x1))) | → | dd(dc(cb(bc(ca(ab(x1)))))) | (56) |
| ba(ad(dc(x1))) | → | bd(dc(cb(bc(ca(ac(x1)))))) | (59) |
| ba(ad(db(x1))) | → | bd(dc(cb(bc(ca(ab(x1)))))) | (60) |
| ba(ad(da(x1))) | → | bd(dc(cb(bc(ca(aa(x1)))))) | (61) |
| ba(ad(dd(x1))) | → | bd(dc(cb(bc(ca(ad(x1)))))) | (62) |
| cc(cd(x1)) | → | ca(aa(ab(bd(x1)))) | (66) |
| ac(cd(x1)) | → | aa(aa(ab(bd(x1)))) | (70) |
| dc(cd(x1)) | → | da(aa(ab(bd(x1)))) | (74) |
| bc(cd(x1)) | → | ba(aa(ab(bd(x1)))) | (78) |
| cc(cd(db(x1))) | → | ca(ad(dc(ca(ab(x1))))) | (80) |
| ac(cd(db(x1))) | → | aa(ad(dc(ca(ab(x1))))) | (84) |
| dc(cd(db(x1))) | → | da(ad(dc(ca(ab(x1))))) | (88) |
| bc(cd(db(x1))) | → | ba(ad(dc(ca(ab(x1))))) | (92) |
There are 131 ruless (increase limit for explicit display).
The dependency pairs are split into 1 component.
There are 108 ruless (increase limit for explicit display).
| [cc#(x1)] | = | 1 · x1 |
| [cc(x1)] | = | 1 · x1 |
| [bc#(x1)] | = | 1 · x1 |
| [cd(x1)] | = | 1 + 1 · x1 |
| [dc(x1)] | = | 1 · x1 |
| [dc#(x1)] | = | 1 · x1 |
| [ca(x1)] | = | 1 · x1 |
| [ac(x1)] | = | 1 · x1 |
| [da#(x1)] | = | 1 · x1 |
| [ad(x1)] | = | 1 + 1 · x1 |
| [cb(x1)] | = | 0 |
| [bc(x1)] | = | 1 · x1 |
| [aa(x1)] | = | 1 · x1 |
| [cb#(x1)] | = | 1 · x1 |
| [ca#(x1)] | = | 1 · x1 |
| [ac#(x1)] | = | 1 · x1 |
| [aa#(x1)] | = | 1 · x1 |
| [da(x1)] | = | 1 · x1 |
| [ab(x1)] | = | 1 · x1 |
| [dd(x1)] | = | 1 + 1 · x1 |
| [bb(x1)] | = | 0 |
| [ba(x1)] | = | 0 |
| bc#(cd(dc(x1))) | → | dc#(ca(ac(x1))) | (218) |
| da#(ad(dc(x1))) | → | dc#(cb(bc(ca(ac(x1))))) | (146) |
| da#(ad(dc(x1))) | → | cb#(bc(ca(ac(x1)))) | (147) |
| ca#(ad(dc(x1))) | → | dc#(cb(bc(ca(ac(x1))))) | (118) |
| da#(ad(dc(x1))) | → | bc#(ca(ac(x1))) | (148) |
| bc#(cd(dc(x1))) | → | ca#(ac(x1)) | (219) |
| ca#(ad(dc(x1))) | → | cb#(bc(ca(ac(x1)))) | (119) |
| bc#(cd(dc(x1))) | → | ac#(x1) | (220) |
| aa#(ad(dc(x1))) | → | dc#(cb(bc(ca(ac(x1))))) | (132) |
| bc#(cd(da(x1))) | → | dc#(ca(aa(x1))) | (221) |
| da#(ad(dc(x1))) | → | ca#(ac(x1)) | (149) |
| ca#(ad(dc(x1))) | → | bc#(ca(ac(x1))) | (120) |
| bc#(cd(da(x1))) | → | ca#(aa(x1)) | (222) |
| ca#(ad(dc(x1))) | → | ca#(ac(x1)) | (121) |
| ca#(ad(dc(x1))) | → | ac#(x1) | (122) |
| aa#(ad(dc(x1))) | → | cb#(bc(ca(ac(x1)))) | (133) |
| cc#(cd(dc(x1))) | → | dc#(ca(ac(x1))) | (186) |
| dc#(cd(dc(x1))) | → | dc#(ca(ac(x1))) | (208) |
| dc#(cd(dc(x1))) | → | ca#(ac(x1)) | (209) |
| ca#(ad(da(x1))) | → | dc#(cb(bc(ca(aa(x1))))) | (123) |
| dc#(cd(dc(x1))) | → | ac#(x1) | (210) |
| aa#(ad(dc(x1))) | → | bc#(ca(ac(x1))) | (134) |
| bc#(cd(da(x1))) | → | aa#(x1) | (223) |
| aa#(ad(dc(x1))) | → | ca#(ac(x1)) | (135) |
| ca#(ad(da(x1))) | → | cb#(bc(ca(aa(x1)))) | (124) |
| cc#(cd(dc(x1))) | → | ca#(ac(x1)) | (187) |
| ca#(ad(da(x1))) | → | bc#(ca(aa(x1))) | (125) |
| bc#(cd(dd(x1))) | → | dc#(ca(ad(x1))) | (224) |
| da#(ad(dc(x1))) | → | ac#(x1) | (150) |
| bc#(cd(dd(x1))) | → | ca#(ad(x1)) | (225) |
| ca#(ad(da(x1))) | → | ca#(aa(x1)) | (126) |
| ca#(ad(da(x1))) | → | aa#(x1) | (127) |
| aa#(ad(dc(x1))) | → | ac#(x1) | (136) |
| aa#(ad(da(x1))) | → | dc#(cb(bc(ca(aa(x1))))) | (137) |
| dc#(cd(da(x1))) | → | dc#(ca(aa(x1))) | (212) |
| dc#(cd(da(x1))) | → | ca#(aa(x1)) | (213) |
| ca#(ad(dd(x1))) | → | dc#(cb(bc(ca(ad(x1))))) | (128) |
| dc#(cd(da(x1))) | → | aa#(x1) | (214) |
| aa#(ad(da(x1))) | → | cb#(bc(ca(aa(x1)))) | (138) |
| cc#(cd(dc(x1))) | → | ac#(x1) | (188) |
| ac#(cd(dc(x1))) | → | dc#(ca(ac(x1))) | (197) |
| da#(ad(da(x1))) | → | dc#(cb(bc(ca(aa(x1))))) | (151) |
| dc#(cd(dd(x1))) | → | dc#(ca(ad(x1))) | (216) |
| dc#(cd(dd(x1))) | → | ca#(ad(x1)) | (217) |
| ca#(ad(dd(x1))) | → | cb#(bc(ca(ad(x1)))) | (129) |
| ca#(ad(dd(x1))) | → | bc#(ca(ad(x1))) | (130) |
| ca#(ad(dd(x1))) | → | ca#(ad(x1)) | (131) |
| cb#(bc(ca(ad(x1)))) | → | cc#(cb(bc(cd(x1)))) | (107) |
| cc#(cd(da(x1))) | → | dc#(ca(aa(x1))) | (190) |
| cc#(cd(da(x1))) | → | ca#(aa(x1)) | (191) |
| cc#(cd(da(x1))) | → | aa#(x1) | (192) |
| aa#(ad(da(x1))) | → | bc#(ca(aa(x1))) | (139) |
| aa#(ad(da(x1))) | → | ca#(aa(x1)) | (140) |
| aa#(ad(da(x1))) | → | aa#(x1) | (141) |
| aa#(ad(dd(x1))) | → | dc#(cb(bc(ca(ad(x1))))) | (142) |
| aa#(ad(dd(x1))) | → | cb#(bc(ca(ad(x1)))) | (143) |
| aa#(ad(dd(x1))) | → | bc#(ca(ad(x1))) | (144) |
| aa#(ad(dd(x1))) | → | ca#(ad(x1)) | (145) |
| cc#(cd(dd(x1))) | → | dc#(ca(ad(x1))) | (194) |
| cc#(cd(dd(x1))) | → | ca#(ad(x1)) | (195) |
| da#(ad(da(x1))) | → | cb#(bc(ca(aa(x1)))) | (152) |
| da#(ad(da(x1))) | → | bc#(ca(aa(x1))) | (153) |
| da#(ad(da(x1))) | → | ca#(aa(x1)) | (154) |
| da#(ad(da(x1))) | → | aa#(x1) | (155) |
| da#(ad(dd(x1))) | → | dc#(cb(bc(ca(ad(x1))))) | (156) |
| da#(ad(dd(x1))) | → | cb#(bc(ca(ad(x1)))) | (157) |
| da#(ad(dd(x1))) | → | bc#(ca(ad(x1))) | (158) |
| da#(ad(dd(x1))) | → | ca#(ad(x1)) | (159) |
| ac#(cd(dc(x1))) | → | ca#(ac(x1)) | (198) |
| ac#(cd(dc(x1))) | → | ac#(x1) | (199) |
| ac#(cd(da(x1))) | → | dc#(ca(aa(x1))) | (201) |
| ac#(cd(da(x1))) | → | ca#(aa(x1)) | (202) |
| ac#(cd(da(x1))) | → | aa#(x1) | (203) |
| ac#(cd(dd(x1))) | → | dc#(ca(ad(x1))) | (205) |
| ac#(cd(dd(x1))) | → | ca#(ad(x1)) | (206) |
The dependency pairs are split into 2 components.
| cb#(bc(ca(ab(x1)))) | → | cb#(bc(cb(x1))) | (100) |
| cb#(bc(ca(ac(x1)))) | → | cb#(bc(cc(x1))) | (96) |
| cb#(bc(ca(ab(x1)))) | → | cb#(x1) | (102) |
| cb#(bc(ca(aa(x1)))) | → | cb#(bc(ca(x1))) | (104) |
| cb#(bc(ca(ad(x1)))) | → | cb#(bc(cd(x1))) | (108) |
| [cb#(x1)] | = | 1 · x1 |
| [bc(x1)] | = | 1 · x1 |
| [ca(x1)] | = | 1 · x1 |
| [ab(x1)] | = | 1 · x1 |
| [cb(x1)] | = | 0 |
| [ac(x1)] | = | 1 + 1 · x1 |
| [cc(x1)] | = | 1 · x1 |
| [aa(x1)] | = | 1 · x1 |
| [ad(x1)] | = | 0 |
| [cd(x1)] | = | 0 |
| [ba(x1)] | = | 0 |
| [bb(x1)] | = | 0 |
| [dc(x1)] | = | 0 |
| [da(x1)] | = | 0 |
| [dd(x1)] | = | 0 |
| cb(bc(ca(ac(x1)))) | → | cc(cb(bc(cc(x1)))) | (27) |
| cb(bc(ca(ab(x1)))) | → | cc(cb(bc(cb(x1)))) | (28) |
| cb(bc(ca(aa(x1)))) | → | cc(cb(bc(ca(x1)))) | (29) |
| cb(bc(ca(ad(x1)))) | → | cc(cb(bc(cd(x1)))) | (30) |
| bc(ca(ac(x1))) | → | ba(ac(x1)) | (43) |
| bc(ca(ab(x1))) | → | ba(ab(x1)) | (44) |
| bc(ca(aa(x1))) | → | ba(aa(x1)) | (45) |
| bc(ca(ad(x1))) | → | ba(ad(x1)) | (46) |
| bc(cc(x1)) | → | ba(aa(ab(bc(x1)))) | (75) |
| bc(cb(x1)) | → | ba(aa(ab(bb(x1)))) | (76) |
| bc(ca(x1)) | → | ba(aa(ab(ba(x1)))) | (77) |
| bc(cd(dc(x1))) | → | ba(ad(dc(ca(ac(x1))))) | (91) |
| bc(cd(da(x1))) | → | ba(ad(dc(ca(aa(x1))))) | (93) |
| bc(cd(dd(x1))) | → | ba(ad(dc(ca(ad(x1))))) | (94) |
| cc(ca(ac(x1))) | → | ca(ac(x1)) | (31) |
| cc(ca(ab(x1))) | → | ca(ab(x1)) | (32) |
| cc(ca(aa(x1))) | → | ca(aa(x1)) | (33) |
| cc(ca(ad(x1))) | → | ca(ad(x1)) | (34) |
| cc(cc(x1)) | → | ca(aa(ab(bc(x1)))) | (63) |
| cc(cb(x1)) | → | ca(aa(ab(bb(x1)))) | (64) |
| cc(ca(x1)) | → | ca(aa(ab(ba(x1)))) | (65) |
| cc(cd(dc(x1))) | → | ca(ad(dc(ca(ac(x1))))) | (79) |
| cc(cd(da(x1))) | → | ca(ad(dc(ca(aa(x1))))) | (81) |
| cc(cd(dd(x1))) | → | ca(ad(dc(ca(ad(x1))))) | (82) |
| ca(ad(dc(x1))) | → | cd(dc(cb(bc(ca(ac(x1)))))) | (47) |
| ca(ad(da(x1))) | → | cd(dc(cb(bc(ca(aa(x1)))))) | (49) |
| ca(ad(dd(x1))) | → | cd(dc(cb(bc(ca(ad(x1)))))) | (50) |
| ac(ca(ac(x1))) | → | aa(ac(x1)) | (35) |
| ac(ca(aa(x1))) | → | aa(aa(x1)) | (37) |
| ac(ca(ad(x1))) | → | aa(ad(x1)) | (38) |
| ac(cc(x1)) | → | aa(aa(ab(bc(x1)))) | (67) |
| ac(cd(dc(x1))) | → | aa(ad(dc(ca(ac(x1))))) | (83) |
| ac(cd(da(x1))) | → | aa(ad(dc(ca(aa(x1))))) | (85) |
| ac(cd(dd(x1))) | → | aa(ad(dc(ca(ad(x1))))) | (86) |
| aa(ad(dc(x1))) | → | ad(dc(cb(bc(ca(ac(x1)))))) | (51) |
| aa(ad(da(x1))) | → | ad(dc(cb(bc(ca(aa(x1)))))) | (53) |
| aa(ad(dd(x1))) | → | ad(dc(cb(bc(ca(ad(x1)))))) | (54) |
| ac(ca(ab(x1))) | → | aa(ab(x1)) | (36) |
| ac(cb(x1)) | → | aa(aa(ab(bb(x1)))) | (68) |
| ac(ca(x1)) | → | aa(aa(ab(ba(x1)))) | (69) |
| cb#(bc(ca(ac(x1)))) | → | cb#(bc(cc(x1))) | (96) |
| [cb#(x1)] | = | 2 · x1 |
| [bc(x1)] | = | x1 |
| [ad(x1)] | = | 1 |
| [ba(x1)] | = | -2 |
| [dc(x1)] | = | -2 |
| [cb(x1)] | = | 0 |
| [ca(x1)] | = | 2 · x1 |
| [ac(x1)] | = | 2 · x1 |
| [cc(x1)] | = | 2 · x1 |
| [ab(x1)] | = | x1 |
| [aa(x1)] | = | 2 · x1 |
| [cd(x1)] | = | 1 |
| [bb(x1)] | = | 0 |
| [da(x1)] | = | -2 + x1 |
| [dd(x1)] | = | -2 + x1 |
| cb(bc(ca(ac(x1)))) | → | cc(cb(bc(cc(x1)))) | (27) |
| cb(bc(ca(ab(x1)))) | → | cc(cb(bc(cb(x1)))) | (28) |
| cb(bc(ca(aa(x1)))) | → | cc(cb(bc(ca(x1)))) | (29) |
| cb(bc(ca(ad(x1)))) | → | cc(cb(bc(cd(x1)))) | (30) |
| bc(ca(ac(x1))) | → | ba(ac(x1)) | (43) |
| bc(ca(ab(x1))) | → | ba(ab(x1)) | (44) |
| bc(ca(aa(x1))) | → | ba(aa(x1)) | (45) |
| bc(ca(ad(x1))) | → | ba(ad(x1)) | (46) |
| bc(cc(x1)) | → | ba(aa(ab(bc(x1)))) | (75) |
| bc(cb(x1)) | → | ba(aa(ab(bb(x1)))) | (76) |
| bc(ca(x1)) | → | ba(aa(ab(ba(x1)))) | (77) |
| bc(cd(dc(x1))) | → | ba(ad(dc(ca(ac(x1))))) | (91) |
| bc(cd(da(x1))) | → | ba(ad(dc(ca(aa(x1))))) | (93) |
| bc(cd(dd(x1))) | → | ba(ad(dc(ca(ad(x1))))) | (94) |
| ca(ad(dc(x1))) | → | cd(dc(cb(bc(ca(ac(x1)))))) | (47) |
| ca(ad(da(x1))) | → | cd(dc(cb(bc(ca(aa(x1)))))) | (49) |
| ca(ad(dd(x1))) | → | cd(dc(cb(bc(ca(ad(x1)))))) | (50) |
| ac(ca(ac(x1))) | → | aa(ac(x1)) | (35) |
| ac(ca(aa(x1))) | → | aa(aa(x1)) | (37) |
| ac(ca(ad(x1))) | → | aa(ad(x1)) | (38) |
| ac(cc(x1)) | → | aa(aa(ab(bc(x1)))) | (67) |
| ac(cd(dc(x1))) | → | aa(ad(dc(ca(ac(x1))))) | (83) |
| ac(cd(da(x1))) | → | aa(ad(dc(ca(aa(x1))))) | (85) |
| ac(cd(dd(x1))) | → | aa(ad(dc(ca(ad(x1))))) | (86) |
| aa(ad(dc(x1))) | → | ad(dc(cb(bc(ca(ac(x1)))))) | (51) |
| aa(ad(da(x1))) | → | ad(dc(cb(bc(ca(aa(x1)))))) | (53) |
| aa(ad(dd(x1))) | → | ad(dc(cb(bc(ca(ad(x1)))))) | (54) |
| cc(ca(ac(x1))) | → | ca(ac(x1)) | (31) |
| cc(ca(aa(x1))) | → | ca(aa(x1)) | (33) |
| cc(ca(ad(x1))) | → | ca(ad(x1)) | (34) |
| cc(cc(x1)) | → | ca(aa(ab(bc(x1)))) | (63) |
| cc(cd(dc(x1))) | → | ca(ad(dc(ca(ac(x1))))) | (79) |
| cc(cd(da(x1))) | → | ca(ad(dc(ca(aa(x1))))) | (81) |
| cc(cd(dd(x1))) | → | ca(ad(dc(ca(ad(x1))))) | (82) |
| ac(ca(ab(x1))) | → | aa(ab(x1)) | (36) |
| ac(cb(x1)) | → | aa(aa(ab(bb(x1)))) | (68) |
| ac(ca(x1)) | → | aa(aa(ab(ba(x1)))) | (69) |
| cc(ca(ab(x1))) | → | ca(ab(x1)) | (32) |
| cc(cb(x1)) | → | ca(aa(ab(bb(x1)))) | (64) |
| cc(ca(x1)) | → | ca(aa(ab(ba(x1)))) | (65) |
| cb#(bc(ca(ad(x1)))) | → | cb#(bc(cd(x1))) | (108) |
| [cb#(x1)] | = |
|
||||||||||||||||||
| [bc(x1)] | = |
|
||||||||||||||||||
| [ca(x1)] | = |
|
||||||||||||||||||
| [ab(x1)] | = |
|
||||||||||||||||||
| [cb(x1)] | = |
|
||||||||||||||||||
| [aa(x1)] | = |
|
||||||||||||||||||
| [ac(x1)] | = |
|
||||||||||||||||||
| [cc(x1)] | = |
|
||||||||||||||||||
| [ad(x1)] | = |
|
||||||||||||||||||
| [cd(x1)] | = |
|
||||||||||||||||||
| [ba(x1)] | = |
|
||||||||||||||||||
| [bb(x1)] | = |
|
||||||||||||||||||
| [dc(x1)] | = |
|
||||||||||||||||||
| [da(x1)] | = |
|
||||||||||||||||||
| [dd(x1)] | = |
|
| cb(bc(ca(ac(x1)))) | → | cc(cb(bc(cc(x1)))) | (27) |
| cb(bc(ca(ab(x1)))) | → | cc(cb(bc(cb(x1)))) | (28) |
| cb(bc(ca(aa(x1)))) | → | cc(cb(bc(ca(x1)))) | (29) |
| cb(bc(ca(ad(x1)))) | → | cc(cb(bc(cd(x1)))) | (30) |
| bc(ca(ac(x1))) | → | ba(ac(x1)) | (43) |
| bc(ca(ab(x1))) | → | ba(ab(x1)) | (44) |
| bc(ca(aa(x1))) | → | ba(aa(x1)) | (45) |
| bc(ca(ad(x1))) | → | ba(ad(x1)) | (46) |
| bc(cc(x1)) | → | ba(aa(ab(bc(x1)))) | (75) |
| bc(cb(x1)) | → | ba(aa(ab(bb(x1)))) | (76) |
| bc(ca(x1)) | → | ba(aa(ab(ba(x1)))) | (77) |
| bc(cd(dc(x1))) | → | ba(ad(dc(ca(ac(x1))))) | (91) |
| bc(cd(da(x1))) | → | ba(ad(dc(ca(aa(x1))))) | (93) |
| bc(cd(dd(x1))) | → | ba(ad(dc(ca(ad(x1))))) | (94) |
| ca(ad(dc(x1))) | → | cd(dc(cb(bc(ca(ac(x1)))))) | (47) |
| ca(ad(da(x1))) | → | cd(dc(cb(bc(ca(aa(x1)))))) | (49) |
| ca(ad(dd(x1))) | → | cd(dc(cb(bc(ca(ad(x1)))))) | (50) |
| ac(ca(ac(x1))) | → | aa(ac(x1)) | (35) |
| ac(ca(aa(x1))) | → | aa(aa(x1)) | (37) |
| ac(ca(ad(x1))) | → | aa(ad(x1)) | (38) |
| ac(cc(x1)) | → | aa(aa(ab(bc(x1)))) | (67) |
| ac(cd(dc(x1))) | → | aa(ad(dc(ca(ac(x1))))) | (83) |
| ac(cd(da(x1))) | → | aa(ad(dc(ca(aa(x1))))) | (85) |
| ac(cd(dd(x1))) | → | aa(ad(dc(ca(ad(x1))))) | (86) |
| aa(ad(dc(x1))) | → | ad(dc(cb(bc(ca(ac(x1)))))) | (51) |
| aa(ad(da(x1))) | → | ad(dc(cb(bc(ca(aa(x1)))))) | (53) |
| aa(ad(dd(x1))) | → | ad(dc(cb(bc(ca(ad(x1)))))) | (54) |
| cc(ca(ac(x1))) | → | ca(ac(x1)) | (31) |
| cc(ca(aa(x1))) | → | ca(aa(x1)) | (33) |
| cc(ca(ad(x1))) | → | ca(ad(x1)) | (34) |
| cc(cc(x1)) | → | ca(aa(ab(bc(x1)))) | (63) |
| cc(cd(dc(x1))) | → | ca(ad(dc(ca(ac(x1))))) | (79) |
| cc(cd(da(x1))) | → | ca(ad(dc(ca(aa(x1))))) | (81) |
| cc(cd(dd(x1))) | → | ca(ad(dc(ca(ad(x1))))) | (82) |
| ac(ca(ab(x1))) | → | aa(ab(x1)) | (36) |
| ac(cb(x1)) | → | aa(aa(ab(bb(x1)))) | (68) |
| ac(ca(x1)) | → | aa(aa(ab(ba(x1)))) | (69) |
| cc(ca(ab(x1))) | → | ca(ab(x1)) | (32) |
| cc(cb(x1)) | → | ca(aa(ab(bb(x1)))) | (64) |
| cc(ca(x1)) | → | ca(aa(ab(ba(x1)))) | (65) |
| cb#(bc(ca(aa(x1)))) | → | cb#(bc(ca(x1))) | (104) |
| [cb#(x1)] | = | 1 · x1 |
| [bc(x1)] | = | 1 + 1 · x1 |
| [ca(x1)] | = | 1 · x1 |
| [ab(x1)] | = | 1 · x1 |
| [cb(x1)] | = | 0 |
| [ac(x1)] | = | 0 |
| [cc(x1)] | = | 1 · x1 |
| [aa(x1)] | = | 0 |
| [ad(x1)] | = | 0 |
| [cd(x1)] | = | 0 |
| [ba(x1)] | = | 0 |
| [bb(x1)] | = | 1 · x1 |
| [dc(x1)] | = | 0 |
| [da(x1)] | = | 0 |
| [dd(x1)] | = | 0 |
| cb(bc(ca(ac(x1)))) | → | cc(cb(bc(cc(x1)))) | (27) |
| cb(bc(ca(ab(x1)))) | → | cc(cb(bc(cb(x1)))) | (28) |
| cb(bc(ca(aa(x1)))) | → | cc(cb(bc(ca(x1)))) | (29) |
| cb(bc(ca(ad(x1)))) | → | cc(cb(bc(cd(x1)))) | (30) |
| bc(ca(ac(x1))) | → | ba(ac(x1)) | (43) |
| bc(ca(ab(x1))) | → | ba(ab(x1)) | (44) |
| bc(ca(aa(x1))) | → | ba(aa(x1)) | (45) |
| bc(ca(ad(x1))) | → | ba(ad(x1)) | (46) |
| bc(cc(x1)) | → | ba(aa(ab(bc(x1)))) | (75) |
| bc(cb(x1)) | → | ba(aa(ab(bb(x1)))) | (76) |
| bc(ca(x1)) | → | ba(aa(ab(ba(x1)))) | (77) |
| bc(cd(dc(x1))) | → | ba(ad(dc(ca(ac(x1))))) | (91) |
| bc(cd(da(x1))) | → | ba(ad(dc(ca(aa(x1))))) | (93) |
| bc(cd(dd(x1))) | → | ba(ad(dc(ca(ad(x1))))) | (94) |
| ac(ca(ac(x1))) | → | aa(ac(x1)) | (35) |
| ac(ca(aa(x1))) | → | aa(aa(x1)) | (37) |
| ac(ca(ad(x1))) | → | aa(ad(x1)) | (38) |
| ac(cc(x1)) | → | aa(aa(ab(bc(x1)))) | (67) |
| ac(cd(dc(x1))) | → | aa(ad(dc(ca(ac(x1))))) | (83) |
| ac(cd(da(x1))) | → | aa(ad(dc(ca(aa(x1))))) | (85) |
| ac(cd(dd(x1))) | → | aa(ad(dc(ca(ad(x1))))) | (86) |
| aa(ad(dc(x1))) | → | ad(dc(cb(bc(ca(ac(x1)))))) | (51) |
| aa(ad(da(x1))) | → | ad(dc(cb(bc(ca(aa(x1)))))) | (53) |
| aa(ad(dd(x1))) | → | ad(dc(cb(bc(ca(ad(x1)))))) | (54) |
| ca(ad(dc(x1))) | → | cd(dc(cb(bc(ca(ac(x1)))))) | (47) |
| ca(ad(da(x1))) | → | cd(dc(cb(bc(ca(aa(x1)))))) | (49) |
| ca(ad(dd(x1))) | → | cd(dc(cb(bc(ca(ad(x1)))))) | (50) |
| cc(ca(ac(x1))) | → | ca(ac(x1)) | (31) |
| cc(ca(aa(x1))) | → | ca(aa(x1)) | (33) |
| cc(ca(ad(x1))) | → | ca(ad(x1)) | (34) |
| cc(cc(x1)) | → | ca(aa(ab(bc(x1)))) | (63) |
| cc(cd(dc(x1))) | → | ca(ad(dc(ca(ac(x1))))) | (79) |
| cc(cd(da(x1))) | → | ca(ad(dc(ca(aa(x1))))) | (81) |
| cc(cd(dd(x1))) | → | ca(ad(dc(ca(ad(x1))))) | (82) |
| ac(ca(ab(x1))) | → | aa(ab(x1)) | (36) |
| ac(cb(x1)) | → | aa(aa(ab(bb(x1)))) | (68) |
| ac(ca(x1)) | → | aa(aa(ab(ba(x1)))) | (69) |
| cc(ca(ab(x1))) | → | ca(ab(x1)) | (32) |
| cc(cb(x1)) | → | ca(aa(ab(bb(x1)))) | (64) |
| cc(ca(x1)) | → | ca(aa(ab(ba(x1)))) | (65) |
| cb#(bc(ca(ab(x1)))) | → | cb#(x1) | (102) |
| [cb#(x1)] | = | 1 · x1 |
| [bc(x1)] | = | 1 · x1 |
| [ca(x1)] | = | 1 · x1 |
| [ab(x1)] | = | 1 |
| [cb(x1)] | = | 0 |
| [ac(x1)] | = | 0 |
| [cc(x1)] | = | 1 · x1 |
| [aa(x1)] | = | 0 |
| [ad(x1)] | = | 0 |
| [cd(x1)] | = | 0 |
| [ba(x1)] | = | 0 |
| [bb(x1)] | = | 1 · x1 |
| [dc(x1)] | = | 0 |
| [da(x1)] | = | 0 |
| [dd(x1)] | = | 0 |
| cb(bc(ca(ac(x1)))) | → | cc(cb(bc(cc(x1)))) | (27) |
| cb(bc(ca(ab(x1)))) | → | cc(cb(bc(cb(x1)))) | (28) |
| cb(bc(ca(aa(x1)))) | → | cc(cb(bc(ca(x1)))) | (29) |
| cb(bc(ca(ad(x1)))) | → | cc(cb(bc(cd(x1)))) | (30) |
| bc(ca(ac(x1))) | → | ba(ac(x1)) | (43) |
| bc(ca(ab(x1))) | → | ba(ab(x1)) | (44) |
| bc(ca(aa(x1))) | → | ba(aa(x1)) | (45) |
| bc(ca(ad(x1))) | → | ba(ad(x1)) | (46) |
| bc(cc(x1)) | → | ba(aa(ab(bc(x1)))) | (75) |
| bc(cb(x1)) | → | ba(aa(ab(bb(x1)))) | (76) |
| bc(ca(x1)) | → | ba(aa(ab(ba(x1)))) | (77) |
| bc(cd(dc(x1))) | → | ba(ad(dc(ca(ac(x1))))) | (91) |
| bc(cd(da(x1))) | → | ba(ad(dc(ca(aa(x1))))) | (93) |
| bc(cd(dd(x1))) | → | ba(ad(dc(ca(ad(x1))))) | (94) |
| ac(ca(ac(x1))) | → | aa(ac(x1)) | (35) |
| ac(ca(aa(x1))) | → | aa(aa(x1)) | (37) |
| ac(ca(ad(x1))) | → | aa(ad(x1)) | (38) |
| ac(cc(x1)) | → | aa(aa(ab(bc(x1)))) | (67) |
| ac(cd(dc(x1))) | → | aa(ad(dc(ca(ac(x1))))) | (83) |
| ac(cd(da(x1))) | → | aa(ad(dc(ca(aa(x1))))) | (85) |
| ac(cd(dd(x1))) | → | aa(ad(dc(ca(ad(x1))))) | (86) |
| aa(ad(dc(x1))) | → | ad(dc(cb(bc(ca(ac(x1)))))) | (51) |
| aa(ad(da(x1))) | → | ad(dc(cb(bc(ca(aa(x1)))))) | (53) |
| aa(ad(dd(x1))) | → | ad(dc(cb(bc(ca(ad(x1)))))) | (54) |
| ca(ad(dc(x1))) | → | cd(dc(cb(bc(ca(ac(x1)))))) | (47) |
| ca(ad(da(x1))) | → | cd(dc(cb(bc(ca(aa(x1)))))) | (49) |
| ca(ad(dd(x1))) | → | cd(dc(cb(bc(ca(ad(x1)))))) | (50) |
| cc(ca(ac(x1))) | → | ca(ac(x1)) | (31) |
| cc(ca(aa(x1))) | → | ca(aa(x1)) | (33) |
| cc(ca(ad(x1))) | → | ca(ad(x1)) | (34) |
| cc(cc(x1)) | → | ca(aa(ab(bc(x1)))) | (63) |
| cc(cd(dc(x1))) | → | ca(ad(dc(ca(ac(x1))))) | (79) |
| cc(cd(da(x1))) | → | ca(ad(dc(ca(aa(x1))))) | (81) |
| cc(cd(dd(x1))) | → | ca(ad(dc(ca(ad(x1))))) | (82) |
| ac(ca(ab(x1))) | → | aa(ab(x1)) | (36) |
| ac(cb(x1)) | → | aa(aa(ab(bb(x1)))) | (68) |
| ac(ca(x1)) | → | aa(aa(ab(ba(x1)))) | (69) |
| cc(ca(ab(x1))) | → | ca(ab(x1)) | (32) |
| cc(cb(x1)) | → | ca(aa(ab(bb(x1)))) | (64) |
| cc(ca(x1)) | → | ca(aa(ab(ba(x1)))) | (65) |
| cb#(bc(ca(ab(x1)))) | → | cb#(bc(cb(x1))) | (100) |
There are no pairs anymore.
| bc#(cc(x1)) | → | bc#(x1) | (182) |
| [cc(x1)] | = | 1 · x1 |
| [bc#(x1)] | = | 1 · x1 |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| bc#(cc(x1)) | → | bc#(x1) | (182) |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.