The rewrite relation of the following TRS is considered.
| a(b(x1)) | → | c(d(x1)) | (1) |
| d(d(x1)) | → | b(e(x1)) | (2) |
| b(x1) | → | d(c(x1)) | (3) |
| d(x1) | → | x1 | (4) |
| e(c(x1)) | → | d(a(x1)) | (5) |
| a(x1) | → | e(d(x1)) | (6) |
{a(☐), b(☐), c(☐), d(☐), e(☐)}
We obtain the transformed TRS| a(a(b(x1))) | → | a(c(d(x1))) | (7) |
| b(a(b(x1))) | → | b(c(d(x1))) | (8) |
| c(a(b(x1))) | → | c(c(d(x1))) | (9) |
| d(a(b(x1))) | → | d(c(d(x1))) | (10) |
| e(a(b(x1))) | → | e(c(d(x1))) | (11) |
| a(d(d(x1))) | → | a(b(e(x1))) | (12) |
| b(d(d(x1))) | → | b(b(e(x1))) | (13) |
| c(d(d(x1))) | → | c(b(e(x1))) | (14) |
| d(d(d(x1))) | → | d(b(e(x1))) | (15) |
| e(d(d(x1))) | → | e(b(e(x1))) | (16) |
| a(b(x1)) | → | a(d(c(x1))) | (17) |
| b(b(x1)) | → | b(d(c(x1))) | (18) |
| c(b(x1)) | → | c(d(c(x1))) | (19) |
| d(b(x1)) | → | d(d(c(x1))) | (20) |
| e(b(x1)) | → | e(d(c(x1))) | (21) |
| a(d(x1)) | → | a(x1) | (22) |
| b(d(x1)) | → | b(x1) | (23) |
| c(d(x1)) | → | c(x1) | (24) |
| d(d(x1)) | → | d(x1) | (25) |
| e(d(x1)) | → | e(x1) | (26) |
| a(e(c(x1))) | → | a(d(a(x1))) | (27) |
| b(e(c(x1))) | → | b(d(a(x1))) | (28) |
| c(e(c(x1))) | → | c(d(a(x1))) | (29) |
| d(e(c(x1))) | → | d(d(a(x1))) | (30) |
| e(e(c(x1))) | → | e(d(a(x1))) | (31) |
| a(a(x1)) | → | a(e(d(x1))) | (32) |
| b(a(x1)) | → | b(e(d(x1))) | (33) |
| c(a(x1)) | → | c(e(d(x1))) | (34) |
| d(a(x1)) | → | d(e(d(x1))) | (35) |
| e(a(x1)) | → | e(e(d(x1))) | (36) |
Root-labeling is applied.
We obtain the labeled TRSThere are 150 ruless (increase limit for explicit display).
| [aa(x1)] | = | 1 · x1 + 2 |
| [ab(x1)] | = | 1 · x1 + 10 |
| [ba(x1)] | = | 1 · x1 + 4 |
| [ac(x1)] | = | 1 · x1 + 6 |
| [cd(x1)] | = | 1 · x1 + 5 |
| [da(x1)] | = | 1 · x1 |
| [bb(x1)] | = | 1 · x1 + 10 |
| [db(x1)] | = | 1 · x1 + 10 |
| [bc(x1)] | = | 1 · x1 + 8 |
| [dc(x1)] | = | 1 · x1 + 5 |
| [bd(x1)] | = | 1 · x1 + 5 |
| [dd(x1)] | = | 1 · x1 + 5 |
| [be(x1)] | = | 1 · x1 |
| [de(x1)] | = | 1 · x1 |
| [ca(x1)] | = | 1 · x1 + 3 |
| [cc(x1)] | = | 1 · x1 + 7 |
| [ea(x1)] | = | 1 · x1 |
| [ec(x1)] | = | 1 · x1 + 5 |
| [ad(x1)] | = | 1 · x1 + 5 |
| [eb(x1)] | = | 1 · x1 + 5 |
| [ed(x1)] | = | 1 · x1 |
| [ee(x1)] | = | 1 · x1 |
| [cb(x1)] | = | 1 · x1 + 10 |
| [ce(x1)] | = | 1 · x1 |
| [ae(x1)] | = | 1 · x1 |
| aa(ab(ba(x1))) | → | ac(cd(da(x1))) | (37) |
| aa(ab(bb(x1))) | → | ac(cd(db(x1))) | (38) |
| aa(ab(bc(x1))) | → | ac(cd(dc(x1))) | (39) |
| aa(ab(bd(x1))) | → | ac(cd(dd(x1))) | (40) |
| aa(ab(be(x1))) | → | ac(cd(de(x1))) | (41) |
| ba(ab(ba(x1))) | → | bc(cd(da(x1))) | (42) |
| ba(ab(bb(x1))) | → | bc(cd(db(x1))) | (43) |
| ba(ab(bc(x1))) | → | bc(cd(dc(x1))) | (44) |
| ba(ab(bd(x1))) | → | bc(cd(dd(x1))) | (45) |
| ba(ab(be(x1))) | → | bc(cd(de(x1))) | (46) |
| ca(ab(ba(x1))) | → | cc(cd(da(x1))) | (47) |
| ca(ab(bb(x1))) | → | cc(cd(db(x1))) | (48) |
| ca(ab(bc(x1))) | → | cc(cd(dc(x1))) | (49) |
| ca(ab(bd(x1))) | → | cc(cd(dd(x1))) | (50) |
| ca(ab(be(x1))) | → | cc(cd(de(x1))) | (51) |
| da(ab(ba(x1))) | → | dc(cd(da(x1))) | (52) |
| da(ab(bc(x1))) | → | dc(cd(dc(x1))) | (54) |
| ea(ab(ba(x1))) | → | ec(cd(da(x1))) | (57) |
| ea(ab(bc(x1))) | → | ec(cd(dc(x1))) | (59) |
| ad(dd(db(x1))) | → | ab(be(eb(x1))) | (63) |
| ad(dd(dd(x1))) | → | ab(be(ed(x1))) | (65) |
| bd(dd(db(x1))) | → | bb(be(eb(x1))) | (68) |
| bd(dd(dd(x1))) | → | bb(be(ed(x1))) | (70) |
| cd(dd(db(x1))) | → | cb(be(eb(x1))) | (73) |
| cd(dd(dd(x1))) | → | cb(be(ed(x1))) | (75) |
| dd(dd(db(x1))) | → | db(be(eb(x1))) | (78) |
| dd(dd(dd(x1))) | → | db(be(ed(x1))) | (80) |
| ed(dd(db(x1))) | → | eb(be(eb(x1))) | (83) |
| ed(dd(dd(x1))) | → | eb(be(ed(x1))) | (85) |
| ab(ba(x1)) | → | ad(dc(ca(x1))) | (87) |
| ab(bc(x1)) | → | ad(dc(cc(x1))) | (89) |
| bb(ba(x1)) | → | bd(dc(ca(x1))) | (92) |
| bb(bc(x1)) | → | bd(dc(cc(x1))) | (94) |
| cb(ba(x1)) | → | cd(dc(ca(x1))) | (97) |
| cb(bc(x1)) | → | cd(dc(cc(x1))) | (99) |
| db(ba(x1)) | → | dd(dc(ca(x1))) | (102) |
| db(bc(x1)) | → | dd(dc(cc(x1))) | (104) |
| eb(ba(x1)) | → | ed(dc(ca(x1))) | (107) |
| eb(bc(x1)) | → | ed(dc(cc(x1))) | (109) |
| ad(da(x1)) | → | aa(x1) | (112) |
| ad(db(x1)) | → | ab(x1) | (113) |
| ad(dc(x1)) | → | ac(x1) | (114) |
| ad(dd(x1)) | → | ad(x1) | (115) |
| ad(de(x1)) | → | ae(x1) | (116) |
| bd(da(x1)) | → | ba(x1) | (117) |
| bd(db(x1)) | → | bb(x1) | (118) |
| bd(dc(x1)) | → | bc(x1) | (119) |
| bd(dd(x1)) | → | bd(x1) | (120) |
| bd(de(x1)) | → | be(x1) | (121) |
| cd(da(x1)) | → | ca(x1) | (122) |
| cd(db(x1)) | → | cb(x1) | (123) |
| cd(dc(x1)) | → | cc(x1) | (124) |
| cd(dd(x1)) | → | cd(x1) | (125) |
| cd(de(x1)) | → | ce(x1) | (126) |
| dd(da(x1)) | → | da(x1) | (127) |
| dd(db(x1)) | → | db(x1) | (128) |
| dd(dc(x1)) | → | dc(x1) | (129) |
| dd(dd(x1)) | → | dd(x1) | (130) |
| dd(de(x1)) | → | de(x1) | (131) |
| ed(db(x1)) | → | eb(x1) | (133) |
| ed(dd(x1)) | → | ed(x1) | (135) |
| ae(ec(ca(x1))) | → | ad(da(aa(x1))) | (137) |
| ae(ec(cc(x1))) | → | ad(da(ac(x1))) | (139) |
| be(ec(ca(x1))) | → | bd(da(aa(x1))) | (142) |
| be(ec(cc(x1))) | → | bd(da(ac(x1))) | (144) |
| ce(ec(ca(x1))) | → | cd(da(aa(x1))) | (147) |
| ce(ec(cc(x1))) | → | cd(da(ac(x1))) | (149) |
| de(ec(ca(x1))) | → | dd(da(aa(x1))) | (152) |
| de(ec(cc(x1))) | → | dd(da(ac(x1))) | (154) |
| ee(ec(ca(x1))) | → | ed(da(aa(x1))) | (157) |
| ee(ec(cb(x1))) | → | ed(da(ab(x1))) | (158) |
| ee(ec(cc(x1))) | → | ed(da(ac(x1))) | (159) |
| ee(ec(cd(x1))) | → | ed(da(ad(x1))) | (160) |
| ee(ec(ce(x1))) | → | ed(da(ae(x1))) | (161) |
| aa(aa(x1)) | → | ae(ed(da(x1))) | (162) |
| aa(ab(x1)) | → | ae(ed(db(x1))) | (163) |
| aa(ac(x1)) | → | ae(ed(dc(x1))) | (164) |
| aa(ad(x1)) | → | ae(ed(dd(x1))) | (165) |
| aa(ae(x1)) | → | ae(ed(de(x1))) | (166) |
| ba(aa(x1)) | → | be(ed(da(x1))) | (167) |
| ba(ab(x1)) | → | be(ed(db(x1))) | (168) |
| ba(ac(x1)) | → | be(ed(dc(x1))) | (169) |
| ba(ad(x1)) | → | be(ed(dd(x1))) | (170) |
| ba(ae(x1)) | → | be(ed(de(x1))) | (171) |
| ca(aa(x1)) | → | ce(ed(da(x1))) | (172) |
| ca(ab(x1)) | → | ce(ed(db(x1))) | (173) |
| ca(ac(x1)) | → | ce(ed(dc(x1))) | (174) |
| ca(ad(x1)) | → | ce(ed(dd(x1))) | (175) |
| ca(ae(x1)) | → | ce(ed(de(x1))) | (176) |
| da(aa(x1)) | → | de(ed(da(x1))) | (177) |
| da(ac(x1)) | → | de(ed(dc(x1))) | (179) |
| ea(aa(x1)) | → | ee(ed(da(x1))) | (182) |
| ea(ac(x1)) | → | ee(ed(dc(x1))) | (184) |
There are 129 ruless (increase limit for explicit display).
The dependency pairs are split into 1 component.
There are 108 ruless (increase limit for explicit display).
| [be#(x1)] | = | -2 + 2 · x1 |
| [de#(x1)] | = | 2 · x1 |
| [ab#(x1)] | = | 2 · x1 |
| [be(x1)] | = | x1 |
| [ad#(x1)] | = | -1 + 2 · x1 |
| [de(x1)] | = | x1 |
| [bb#(x1)] | = | 2 · x1 |
| [bd#(x1)] | = | 2 · x1 |
| [cb#(x1)] | = | 2 + 2 · x1 |
| [cd#(x1)] | = | 2 · x1 |
| [db#(x1)] | = | 2 + 2 · x1 |
| [dd#(x1)] | = | 2 + 2 · x1 |
| [eb#(x1)] | = | 2 + 2 · x1 |
| [bd(x1)] | = | 1 + x1 |
| [db(x1)] | = | 2 + x1 |
| [da#(x1)] | = | 2 · x1 |
| [ab(x1)] | = | 2 + x1 |
| [ad(x1)] | = | 1 + x1 |
| [ed#(x1)] | = | 2 · x1 |
| [dd(x1)] | = | 1 + x1 |
| [da(x1)] | = | x1 |
| [cb(x1)] | = | 2 + x1 |
| [dc(x1)] | = | 1 + x1 |
| [ea(x1)] | = | x1 |
| [bb(x1)] | = | 2 + x1 |
| [ec(x1)] | = | 1 + x1 |
| [cd(x1)] | = | 1 + x1 |
| [ee(x1)] | = | -2 |
| [ed(x1)] | = | x1 |
| [ae(x1)] | = | x1 |
| [eb(x1)] | = | 1 + x1 |
| [ce(x1)] | = | x1 |
| [ce#(x1)] | = | 2 · x1 |
| [ea#(x1)] | = | 1 + 2 · x1 |
| [ae#(x1)] | = | 2 · x1 |
| cb#(bb(x1)) | → | cb#(x1) | (247) |
| cb#(bd(x1)) | → | cd#(x1) | (249) |
| cd#(dd(da(x1))) | → | be#(ea(x1)) | (214) |
| bd#(dd(da(x1))) | → | bb#(be(ea(x1))) | (206) |
| bb#(bb(x1)) | → | cb#(x1) | (241) |
| cb#(be(x1)) | → | ce#(x1) | (251) |
| ce#(ec(cb(x1))) | → | cd#(da(ab(x1))) | (283) |
| cd#(dd(da(x1))) | → | ea#(x1) | (215) |
| ea#(ab(bb(x1))) | → | cd#(db(x1)) | (193) |
| cd#(dd(dc(x1))) | → | be#(ec(x1)) | (217) |
| da#(ab(bb(x1))) | → | cd#(db(x1)) | (187) |
| da#(ab(bb(x1))) | → | db#(x1) | (188) |
| db#(bb(x1)) | → | cb#(x1) | (253) |
| db#(bd(x1)) | → | cd#(x1) | (255) |
| db#(be(x1)) | → | ce#(x1) | (257) |
| ce#(ec(cb(x1))) | → | da#(ab(x1)) | (284) |
| da#(ab(bd(x1))) | → | cd#(dd(x1)) | (189) |
| da#(ab(bd(x1))) | → | dd#(x1) | (190) |
| dd#(dd(da(x1))) | → | db#(be(ea(x1))) | (220) |
| dd#(dd(da(x1))) | → | be#(ea(x1)) | (221) |
| be#(ec(cb(x1))) | → | ab#(x1) | (276) |
| ab#(bb(x1)) | → | cb#(x1) | (235) |
| ab#(bd(x1)) | → | cd#(x1) | (237) |
| ce#(ec(cb(x1))) | → | ab#(x1) | (285) |
| ce#(ec(cd(x1))) | → | cd#(da(ad(x1))) | (286) |
| ce#(ec(cd(x1))) | → | da#(ad(x1)) | (287) |
| da#(ab(be(x1))) | → | cd#(de(x1)) | (191) |
| da#(ab(be(x1))) | → | de#(x1) | (192) |
| dd#(dd(da(x1))) | → | ea#(x1) | (222) |
| ea#(ab(bb(x1))) | → | db#(x1) | (194) |
| ea#(ab(bd(x1))) | → | cd#(dd(x1)) | (195) |
| ea#(ab(bd(x1))) | → | dd#(x1) | (196) |
| dd#(dd(dc(x1))) | → | db#(be(ec(x1))) | (223) |
| dd#(dd(dc(x1))) | → | be#(ec(x1)) | (224) |
| bd#(dd(da(x1))) | → | be#(ea(x1)) | (207) |
| de#(ec(cb(x1))) | → | da#(ab(x1)) | (293) |
| eb#(bb(x1)) | → | cb#(x1) | (259) |
| eb#(bd(x1)) | → | cd#(x1) | (261) |
| eb#(be(x1)) | → | ce#(x1) | (263) |
| ce#(ec(cd(x1))) | → | ad#(x1) | (288) |
| ad#(dd(da(x1))) | → | ab#(be(ea(x1))) | (199) |
| ad#(dd(da(x1))) | → | be#(ea(x1)) | (200) |
| be#(ec(cd(x1))) | → | ad#(x1) | (279) |
| ea#(ab(be(x1))) | → | cd#(de(x1)) | (197) |
| ea#(ab(be(x1))) | → | de#(x1) | (198) |
| de#(ec(cb(x1))) | → | ab#(x1) | (294) |
| dd#(dd(de(x1))) | → | db#(be(ee(x1))) | (225) |
| de#(ec(cd(x1))) | → | da#(ad(x1)) | (296) |
| da#(ab(x1)) | → | db#(x1) | (303) |
| de#(ec(cd(x1))) | → | ad#(x1) | (297) |
| ad#(dd(dc(x1))) | → | ab#(be(ec(x1))) | (202) |
| ad#(dd(dc(x1))) | → | be#(ec(x1)) | (203) |
| bd#(dd(da(x1))) | → | ea#(x1) | (208) |
| ea#(ab(x1)) | → | ed#(db(x1)) | (310) |
| ed#(dd(da(x1))) | → | be#(ea(x1)) | (228) |
| ed#(dd(da(x1))) | → | ea#(x1) | (229) |
| ea#(ab(x1)) | → | db#(x1) | (311) |
| ea#(ad(x1)) | → | ed#(dd(x1)) | (312) |
| ed#(dd(dc(x1))) | → | be#(ec(x1)) | (231) |
| ae#(ec(cb(x1))) | → | ad#(da(ab(x1))) | (265) |
| ad#(dd(de(x1))) | → | ab#(be(ee(x1))) | (204) |
| ae#(ec(cb(x1))) | → | da#(ab(x1)) | (266) |
| ae#(ec(cb(x1))) | → | ab#(x1) | (267) |
| ae#(ec(cd(x1))) | → | ad#(da(ad(x1))) | (268) |
| ae#(ec(cd(x1))) | → | da#(ad(x1)) | (269) |
| ae#(ec(cd(x1))) | → | ad#(x1) | (270) |
| ae#(ec(ce(x1))) | → | ad#(da(ae(x1))) | (271) |
| ae#(ec(ce(x1))) | → | da#(ae(x1)) | (272) |
| de#(ec(ce(x1))) | → | da#(ae(x1)) | (299) |
| de#(ec(ce(x1))) | → | ae#(x1) | (300) |
| ae#(ec(ce(x1))) | → | ae#(x1) | (273) |
| ea#(ad(x1)) | → | dd#(x1) | (313) |
| ea#(ae(x1)) | → | ed#(de(x1)) | (314) |
| ea#(ae(x1)) | → | de#(x1) | (315) |
| bd#(dd(dc(x1))) | → | bb#(be(ec(x1))) | (209) |
| bb#(bd(x1)) | → | cd#(x1) | (243) |
| ce#(ec(ce(x1))) | → | cd#(da(ae(x1))) | (289) |
| ce#(ec(ce(x1))) | → | da#(ae(x1)) | (290) |
| ce#(ec(ce(x1))) | → | ae#(x1) | (291) |
| bd#(dd(dc(x1))) | → | be#(ec(x1)) | (210) |
| bd#(dd(de(x1))) | → | bb#(be(ee(x1))) | (211) |
The dependency pairs are split into 0 components.