The rewrite relation of the following TRS is considered.
b(b(d(d(b(b(x1)))))) | → | c(c(d(d(b(b(x1)))))) | (1) |
b(b(a(a(c(c(x1)))))) | → | b(b(c(c(x1)))) | (2) |
a(a(d(d(x1)))) | → | d(d(c(c(x1)))) | (3) |
b(b(b(b(b(b(x1)))))) | → | a(a(b(b(c(c(x1)))))) | (4) |
d(d(c(c(x1)))) | → | b(b(d(d(x1)))) | (5) |
d(d(c(c(x1)))) | → | d(d(b(b(d(d(x1)))))) | (6) |
d(d(a(a(c(c(x1)))))) | → | b(b(b(b(x1)))) | (7) |
b(b(d(d(b(b(x1)))))) | → | b(b(d(d(c(c(x1)))))) | (8) |
c(c(a(a(b(b(x1)))))) | → | c(c(b(b(x1)))) | (9) |
d(d(a(a(x1)))) | → | c(c(d(d(x1)))) | (10) |
b(b(b(b(b(b(x1)))))) | → | c(c(b(b(a(a(x1)))))) | (11) |
c(c(d(d(x1)))) | → | d(d(b(b(x1)))) | (12) |
c(c(d(d(x1)))) | → | d(d(b(b(d(d(x1)))))) | (13) |
c(c(a(a(d(d(x1)))))) | → | b(b(b(b(x1)))) | (14) |
{b(☐), d(☐), c(☐), a(☐)}
We obtain the transformed TRSb(b(d(d(b(b(x1)))))) | → | b(b(d(d(c(c(x1)))))) | (8) |
c(c(a(a(b(b(x1)))))) | → | c(c(b(b(x1)))) | (9) |
b(d(d(a(a(x1))))) | → | b(c(c(d(d(x1))))) | (15) |
d(d(d(a(a(x1))))) | → | d(c(c(d(d(x1))))) | (16) |
c(d(d(a(a(x1))))) | → | c(c(c(d(d(x1))))) | (17) |
a(d(d(a(a(x1))))) | → | a(c(c(d(d(x1))))) | (18) |
b(b(b(b(b(b(b(x1))))))) | → | b(c(c(b(b(a(a(x1))))))) | (19) |
d(b(b(b(b(b(b(x1))))))) | → | d(c(c(b(b(a(a(x1))))))) | (20) |
c(b(b(b(b(b(b(x1))))))) | → | c(c(c(b(b(a(a(x1))))))) | (21) |
a(b(b(b(b(b(b(x1))))))) | → | a(c(c(b(b(a(a(x1))))))) | (22) |
b(c(c(d(d(x1))))) | → | b(d(d(b(b(x1))))) | (23) |
d(c(c(d(d(x1))))) | → | d(d(d(b(b(x1))))) | (24) |
c(c(c(d(d(x1))))) | → | c(d(d(b(b(x1))))) | (25) |
a(c(c(d(d(x1))))) | → | a(d(d(b(b(x1))))) | (26) |
b(c(c(d(d(x1))))) | → | b(d(d(b(b(d(d(x1))))))) | (27) |
d(c(c(d(d(x1))))) | → | d(d(d(b(b(d(d(x1))))))) | (28) |
c(c(c(d(d(x1))))) | → | c(d(d(b(b(d(d(x1))))))) | (29) |
a(c(c(d(d(x1))))) | → | a(d(d(b(b(d(d(x1))))))) | (30) |
b(c(c(a(a(d(d(x1))))))) | → | b(b(b(b(b(x1))))) | (31) |
d(c(c(a(a(d(d(x1))))))) | → | d(b(b(b(b(x1))))) | (32) |
c(c(c(a(a(d(d(x1))))))) | → | c(b(b(b(b(x1))))) | (33) |
a(c(c(a(a(d(d(x1))))))) | → | a(b(b(b(b(x1))))) | (34) |
Root-labeling is applied.
We obtain the labeled TRSbb(bd(dd(db(bb(bb(x1)))))) | → | bb(bd(dd(dc(cc(cb(x1)))))) | (35) |
bb(bd(dd(db(bb(bd(x1)))))) | → | bb(bd(dd(dc(cc(cd(x1)))))) | (36) |
bb(bd(dd(db(bb(bc(x1)))))) | → | bb(bd(dd(dc(cc(cc(x1)))))) | (37) |
bb(bd(dd(db(bb(ba(x1)))))) | → | bb(bd(dd(dc(cc(ca(x1)))))) | (38) |
cc(ca(aa(ab(bb(bb(x1)))))) | → | cc(cb(bb(bb(x1)))) | (39) |
cc(ca(aa(ab(bb(bd(x1)))))) | → | cc(cb(bb(bd(x1)))) | (40) |
cc(ca(aa(ab(bb(bc(x1)))))) | → | cc(cb(bb(bc(x1)))) | (41) |
cc(ca(aa(ab(bb(ba(x1)))))) | → | cc(cb(bb(ba(x1)))) | (42) |
bd(dd(da(aa(ab(x1))))) | → | bc(cc(cd(dd(db(x1))))) | (43) |
bd(dd(da(aa(ad(x1))))) | → | bc(cc(cd(dd(dd(x1))))) | (44) |
bd(dd(da(aa(ac(x1))))) | → | bc(cc(cd(dd(dc(x1))))) | (45) |
bd(dd(da(aa(aa(x1))))) | → | bc(cc(cd(dd(da(x1))))) | (46) |
dd(dd(da(aa(ab(x1))))) | → | dc(cc(cd(dd(db(x1))))) | (47) |
dd(dd(da(aa(ad(x1))))) | → | dc(cc(cd(dd(dd(x1))))) | (48) |
dd(dd(da(aa(ac(x1))))) | → | dc(cc(cd(dd(dc(x1))))) | (49) |
dd(dd(da(aa(aa(x1))))) | → | dc(cc(cd(dd(da(x1))))) | (50) |
cd(dd(da(aa(ab(x1))))) | → | cc(cc(cd(dd(db(x1))))) | (51) |
cd(dd(da(aa(ad(x1))))) | → | cc(cc(cd(dd(dd(x1))))) | (52) |
cd(dd(da(aa(ac(x1))))) | → | cc(cc(cd(dd(dc(x1))))) | (53) |
cd(dd(da(aa(aa(x1))))) | → | cc(cc(cd(dd(da(x1))))) | (54) |
ad(dd(da(aa(ab(x1))))) | → | ac(cc(cd(dd(db(x1))))) | (55) |
ad(dd(da(aa(ad(x1))))) | → | ac(cc(cd(dd(dd(x1))))) | (56) |
ad(dd(da(aa(ac(x1))))) | → | ac(cc(cd(dd(dc(x1))))) | (57) |
ad(dd(da(aa(aa(x1))))) | → | ac(cc(cd(dd(da(x1))))) | (58) |
bb(bb(bb(bb(bb(bb(bb(x1))))))) | → | bc(cc(cb(bb(ba(aa(ab(x1))))))) | (59) |
bb(bb(bb(bb(bb(bb(bd(x1))))))) | → | bc(cc(cb(bb(ba(aa(ad(x1))))))) | (60) |
bb(bb(bb(bb(bb(bb(bc(x1))))))) | → | bc(cc(cb(bb(ba(aa(ac(x1))))))) | (61) |
bb(bb(bb(bb(bb(bb(ba(x1))))))) | → | bc(cc(cb(bb(ba(aa(aa(x1))))))) | (62) |
db(bb(bb(bb(bb(bb(bb(x1))))))) | → | dc(cc(cb(bb(ba(aa(ab(x1))))))) | (63) |
db(bb(bb(bb(bb(bb(bd(x1))))))) | → | dc(cc(cb(bb(ba(aa(ad(x1))))))) | (64) |
db(bb(bb(bb(bb(bb(bc(x1))))))) | → | dc(cc(cb(bb(ba(aa(ac(x1))))))) | (65) |
db(bb(bb(bb(bb(bb(ba(x1))))))) | → | dc(cc(cb(bb(ba(aa(aa(x1))))))) | (66) |
cb(bb(bb(bb(bb(bb(bb(x1))))))) | → | cc(cc(cb(bb(ba(aa(ab(x1))))))) | (67) |
cb(bb(bb(bb(bb(bb(bd(x1))))))) | → | cc(cc(cb(bb(ba(aa(ad(x1))))))) | (68) |
cb(bb(bb(bb(bb(bb(bc(x1))))))) | → | cc(cc(cb(bb(ba(aa(ac(x1))))))) | (69) |
cb(bb(bb(bb(bb(bb(ba(x1))))))) | → | cc(cc(cb(bb(ba(aa(aa(x1))))))) | (70) |
ab(bb(bb(bb(bb(bb(bb(x1))))))) | → | ac(cc(cb(bb(ba(aa(ab(x1))))))) | (71) |
ab(bb(bb(bb(bb(bb(bd(x1))))))) | → | ac(cc(cb(bb(ba(aa(ad(x1))))))) | (72) |
ab(bb(bb(bb(bb(bb(bc(x1))))))) | → | ac(cc(cb(bb(ba(aa(ac(x1))))))) | (73) |
ab(bb(bb(bb(bb(bb(ba(x1))))))) | → | ac(cc(cb(bb(ba(aa(aa(x1))))))) | (74) |
bc(cc(cd(dd(db(x1))))) | → | bd(dd(db(bb(bb(x1))))) | (75) |
bc(cc(cd(dd(dd(x1))))) | → | bd(dd(db(bb(bd(x1))))) | (76) |
bc(cc(cd(dd(dc(x1))))) | → | bd(dd(db(bb(bc(x1))))) | (77) |
bc(cc(cd(dd(da(x1))))) | → | bd(dd(db(bb(ba(x1))))) | (78) |
dc(cc(cd(dd(db(x1))))) | → | dd(dd(db(bb(bb(x1))))) | (79) |
dc(cc(cd(dd(dd(x1))))) | → | dd(dd(db(bb(bd(x1))))) | (80) |
dc(cc(cd(dd(dc(x1))))) | → | dd(dd(db(bb(bc(x1))))) | (81) |
dc(cc(cd(dd(da(x1))))) | → | dd(dd(db(bb(ba(x1))))) | (82) |
cc(cc(cd(dd(db(x1))))) | → | cd(dd(db(bb(bb(x1))))) | (83) |
cc(cc(cd(dd(dd(x1))))) | → | cd(dd(db(bb(bd(x1))))) | (84) |
cc(cc(cd(dd(dc(x1))))) | → | cd(dd(db(bb(bc(x1))))) | (85) |
cc(cc(cd(dd(da(x1))))) | → | cd(dd(db(bb(ba(x1))))) | (86) |
ac(cc(cd(dd(db(x1))))) | → | ad(dd(db(bb(bb(x1))))) | (87) |
ac(cc(cd(dd(dd(x1))))) | → | ad(dd(db(bb(bd(x1))))) | (88) |
ac(cc(cd(dd(dc(x1))))) | → | ad(dd(db(bb(bc(x1))))) | (89) |
ac(cc(cd(dd(da(x1))))) | → | ad(dd(db(bb(ba(x1))))) | (90) |
bc(cc(cd(dd(db(x1))))) | → | bd(dd(db(bb(bd(dd(db(x1))))))) | (91) |
bc(cc(cd(dd(dd(x1))))) | → | bd(dd(db(bb(bd(dd(dd(x1))))))) | (92) |
bc(cc(cd(dd(dc(x1))))) | → | bd(dd(db(bb(bd(dd(dc(x1))))))) | (93) |
bc(cc(cd(dd(da(x1))))) | → | bd(dd(db(bb(bd(dd(da(x1))))))) | (94) |
dc(cc(cd(dd(db(x1))))) | → | dd(dd(db(bb(bd(dd(db(x1))))))) | (95) |
dc(cc(cd(dd(dd(x1))))) | → | dd(dd(db(bb(bd(dd(dd(x1))))))) | (96) |
dc(cc(cd(dd(dc(x1))))) | → | dd(dd(db(bb(bd(dd(dc(x1))))))) | (97) |
dc(cc(cd(dd(da(x1))))) | → | dd(dd(db(bb(bd(dd(da(x1))))))) | (98) |
cc(cc(cd(dd(db(x1))))) | → | cd(dd(db(bb(bd(dd(db(x1))))))) | (99) |
cc(cc(cd(dd(dd(x1))))) | → | cd(dd(db(bb(bd(dd(dd(x1))))))) | (100) |
cc(cc(cd(dd(dc(x1))))) | → | cd(dd(db(bb(bd(dd(dc(x1))))))) | (101) |
cc(cc(cd(dd(da(x1))))) | → | cd(dd(db(bb(bd(dd(da(x1))))))) | (102) |
ac(cc(cd(dd(db(x1))))) | → | ad(dd(db(bb(bd(dd(db(x1))))))) | (103) |
ac(cc(cd(dd(dd(x1))))) | → | ad(dd(db(bb(bd(dd(dd(x1))))))) | (104) |
ac(cc(cd(dd(dc(x1))))) | → | ad(dd(db(bb(bd(dd(dc(x1))))))) | (105) |
ac(cc(cd(dd(da(x1))))) | → | ad(dd(db(bb(bd(dd(da(x1))))))) | (106) |
bc(cc(ca(aa(ad(dd(db(x1))))))) | → | bb(bb(bb(bb(bb(x1))))) | (107) |
bc(cc(ca(aa(ad(dd(dd(x1))))))) | → | bb(bb(bb(bb(bd(x1))))) | (108) |
bc(cc(ca(aa(ad(dd(dc(x1))))))) | → | bb(bb(bb(bb(bc(x1))))) | (109) |
bc(cc(ca(aa(ad(dd(da(x1))))))) | → | bb(bb(bb(bb(ba(x1))))) | (110) |
dc(cc(ca(aa(ad(dd(db(x1))))))) | → | db(bb(bb(bb(bb(x1))))) | (111) |
dc(cc(ca(aa(ad(dd(dd(x1))))))) | → | db(bb(bb(bb(bd(x1))))) | (112) |
dc(cc(ca(aa(ad(dd(dc(x1))))))) | → | db(bb(bb(bb(bc(x1))))) | (113) |
dc(cc(ca(aa(ad(dd(da(x1))))))) | → | db(bb(bb(bb(ba(x1))))) | (114) |
cc(cc(ca(aa(ad(dd(db(x1))))))) | → | cb(bb(bb(bb(bb(x1))))) | (115) |
cc(cc(ca(aa(ad(dd(dd(x1))))))) | → | cb(bb(bb(bb(bd(x1))))) | (116) |
cc(cc(ca(aa(ad(dd(dc(x1))))))) | → | cb(bb(bb(bb(bc(x1))))) | (117) |
cc(cc(ca(aa(ad(dd(da(x1))))))) | → | cb(bb(bb(bb(ba(x1))))) | (118) |
ac(cc(ca(aa(ad(dd(db(x1))))))) | → | ab(bb(bb(bb(bb(x1))))) | (119) |
ac(cc(ca(aa(ad(dd(dd(x1))))))) | → | ab(bb(bb(bb(bd(x1))))) | (120) |
ac(cc(ca(aa(ad(dd(dc(x1))))))) | → | ab(bb(bb(bb(bc(x1))))) | (121) |
ac(cc(ca(aa(ad(dd(da(x1))))))) | → | ab(bb(bb(bb(ba(x1))))) | (122) |
[bb(x1)] | = | 1 · x1 + 1 |
[bd(x1)] | = | 1 · x1 |
[dd(x1)] | = | 1 · x1 |
[db(x1)] | = | 1 · x1 + 1 |
[dc(x1)] | = | 1 · x1 |
[cc(x1)] | = | 1 · x1 + 1 |
[cb(x1)] | = | 1 · x1 |
[cd(x1)] | = | 1 · x1 + 1 |
[bc(x1)] | = | 1 · x1 |
[ba(x1)] | = | 1 · x1 |
[ca(x1)] | = | 1 · x1 + 1 |
[aa(x1)] | = | 1 · x1 + 1 |
[ab(x1)] | = | 1 · x1 + 1 |
[da(x1)] | = | 1 · x1 + 2 |
[ad(x1)] | = | 1 · x1 + 1 |
[ac(x1)] | = | 1 · x1 + 1 |
bb(bd(dd(db(bb(bb(x1)))))) | → | bb(bd(dd(dc(cc(cb(x1)))))) | (35) |
cc(ca(aa(ab(bb(bb(x1)))))) | → | cc(cb(bb(bb(x1)))) | (39) |
cc(ca(aa(ab(bb(bd(x1)))))) | → | cc(cb(bb(bd(x1)))) | (40) |
cc(ca(aa(ab(bb(bc(x1)))))) | → | cc(cb(bb(bc(x1)))) | (41) |
cc(ca(aa(ab(bb(ba(x1)))))) | → | cc(cb(bb(ba(x1)))) | (42) |
bd(dd(da(aa(ab(x1))))) | → | bc(cc(cd(dd(db(x1))))) | (43) |
bd(dd(da(aa(ad(x1))))) | → | bc(cc(cd(dd(dd(x1))))) | (44) |
bd(dd(da(aa(ac(x1))))) | → | bc(cc(cd(dd(dc(x1))))) | (45) |
dd(dd(da(aa(ab(x1))))) | → | dc(cc(cd(dd(db(x1))))) | (47) |
dd(dd(da(aa(ad(x1))))) | → | dc(cc(cd(dd(dd(x1))))) | (48) |
dd(dd(da(aa(ac(x1))))) | → | dc(cc(cd(dd(dc(x1))))) | (49) |
cd(dd(da(aa(ab(x1))))) | → | cc(cc(cd(dd(db(x1))))) | (51) |
cd(dd(da(aa(ad(x1))))) | → | cc(cc(cd(dd(dd(x1))))) | (52) |
cd(dd(da(aa(ac(x1))))) | → | cc(cc(cd(dd(dc(x1))))) | (53) |
ad(dd(da(aa(ab(x1))))) | → | ac(cc(cd(dd(db(x1))))) | (55) |
ad(dd(da(aa(ad(x1))))) | → | ac(cc(cd(dd(dd(x1))))) | (56) |
ad(dd(da(aa(ac(x1))))) | → | ac(cc(cd(dd(dc(x1))))) | (57) |
bb(bb(bb(bb(bb(bb(bb(x1))))))) | → | bc(cc(cb(bb(ba(aa(ab(x1))))))) | (59) |
bb(bb(bb(bb(bb(bb(bd(x1))))))) | → | bc(cc(cb(bb(ba(aa(ad(x1))))))) | (60) |
bb(bb(bb(bb(bb(bb(bc(x1))))))) | → | bc(cc(cb(bb(ba(aa(ac(x1))))))) | (61) |
bb(bb(bb(bb(bb(bb(ba(x1))))))) | → | bc(cc(cb(bb(ba(aa(aa(x1))))))) | (62) |
db(bb(bb(bb(bb(bb(bb(x1))))))) | → | dc(cc(cb(bb(ba(aa(ab(x1))))))) | (63) |
db(bb(bb(bb(bb(bb(bd(x1))))))) | → | dc(cc(cb(bb(ba(aa(ad(x1))))))) | (64) |
db(bb(bb(bb(bb(bb(bc(x1))))))) | → | dc(cc(cb(bb(ba(aa(ac(x1))))))) | (65) |
db(bb(bb(bb(bb(bb(ba(x1))))))) | → | dc(cc(cb(bb(ba(aa(aa(x1))))))) | (66) |
cb(bb(bb(bb(bb(bb(bb(x1))))))) | → | cc(cc(cb(bb(ba(aa(ab(x1))))))) | (67) |
ab(bb(bb(bb(bb(bb(bb(x1))))))) | → | ac(cc(cb(bb(ba(aa(ab(x1))))))) | (71) |
ab(bb(bb(bb(bb(bb(bd(x1))))))) | → | ac(cc(cb(bb(ba(aa(ad(x1))))))) | (72) |
ab(bb(bb(bb(bb(bb(bc(x1))))))) | → | ac(cc(cb(bb(ba(aa(ac(x1))))))) | (73) |
ab(bb(bb(bb(bb(bb(ba(x1))))))) | → | ac(cc(cb(bb(ba(aa(aa(x1))))))) | (74) |
bc(cc(cd(dd(da(x1))))) | → | bd(dd(db(bb(ba(x1))))) | (78) |
dc(cc(cd(dd(da(x1))))) | → | dd(dd(db(bb(ba(x1))))) | (82) |
cc(cc(cd(dd(da(x1))))) | → | cd(dd(db(bb(ba(x1))))) | (86) |
ac(cc(cd(dd(da(x1))))) | → | ad(dd(db(bb(ba(x1))))) | (90) |
bc(cc(ca(aa(ad(dd(da(x1))))))) | → | bb(bb(bb(bb(ba(x1))))) | (110) |
dc(cc(ca(aa(ad(dd(da(x1))))))) | → | db(bb(bb(bb(ba(x1))))) | (114) |
cc(cc(ca(aa(ad(dd(db(x1))))))) | → | cb(bb(bb(bb(bb(x1))))) | (115) |
cc(cc(ca(aa(ad(dd(dd(x1))))))) | → | cb(bb(bb(bb(bd(x1))))) | (116) |
cc(cc(ca(aa(ad(dd(dc(x1))))))) | → | cb(bb(bb(bb(bc(x1))))) | (117) |
cc(cc(ca(aa(ad(dd(da(x1))))))) | → | cb(bb(bb(bb(ba(x1))))) | (118) |
ac(cc(ca(aa(ad(dd(db(x1))))))) | → | ab(bb(bb(bb(bb(x1))))) | (119) |
ac(cc(ca(aa(ad(dd(dd(x1))))))) | → | ab(bb(bb(bb(bd(x1))))) | (120) |
ac(cc(ca(aa(ad(dd(dc(x1))))))) | → | ab(bb(bb(bb(bc(x1))))) | (121) |
ac(cc(ca(aa(ad(dd(da(x1))))))) | → | ab(bb(bb(bb(ba(x1))))) | (122) |
There are 186 ruless (increase limit for explicit display).
The dependency pairs are split into 1 component.
bb#(bd(dd(db(bb(bd(x1)))))) | → | dc#(cc(cd(x1))) | (126) |
dc#(cc(cd(dd(db(x1))))) | → | bb#(bb(x1)) | (184) |
bb#(bd(dd(db(bb(bd(x1)))))) | → | bb#(bd(dd(dc(cc(cd(x1)))))) | (123) |
bb#(bd(dd(db(bb(bd(x1)))))) | → | cc#(cd(x1)) | (127) |
cc#(cc(cd(dd(db(x1))))) | → | bb#(bb(x1)) | (196) |
bb#(bd(dd(db(bb(bd(x1)))))) | → | cd#(x1) | (128) |
cd#(dd(da(aa(aa(x1))))) | → | cc#(cc(cd(dd(da(x1))))) | (148) |
cc#(cc(cd(dd(db(x1))))) | → | bb#(x1) | (197) |
bb#(bd(dd(db(bb(bc(x1)))))) | → | bb#(bd(dd(dc(cc(cc(x1)))))) | (129) |
bb#(bd(dd(db(bb(bc(x1)))))) | → | dc#(cc(cc(x1))) | (132) |
dc#(cc(cd(dd(db(x1))))) | → | bb#(x1) | (185) |
bb#(bd(dd(db(bb(bc(x1)))))) | → | cc#(cc(x1)) | (133) |
cc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(x1)) | (200) |
bb#(bd(dd(db(bb(bc(x1)))))) | → | cc#(x1) | (134) |
cc#(cc(cd(dd(dd(x1))))) | → | bd#(x1) | (201) |
bd#(dd(da(aa(aa(x1))))) | → | bc#(cc(cd(dd(da(x1))))) | (140) |
bc#(cc(cd(dd(db(x1))))) | → | bb#(bb(x1)) | (172) |
bc#(cc(cd(dd(db(x1))))) | → | bb#(x1) | (173) |
bb#(bd(dd(db(bb(ba(x1)))))) | → | bb#(bd(dd(dc(cc(ca(x1)))))) | (135) |
bb#(bd(dd(db(bb(ba(x1)))))) | → | dc#(cc(ca(x1))) | (138) |
dc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(bb(bb(bb(x1)))) | (297) |
dc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(bb(bb(x1))) | (298) |
dc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(bb(x1)) | (299) |
dc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(x1) | (300) |
dc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bb#(bb(bb(bd(x1)))) | (301) |
dc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bb#(bb(bd(x1))) | (302) |
dc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bb#(bd(x1)) | (303) |
dc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bd#(x1) | (304) |
bd#(dd(da(aa(aa(x1))))) | → | cc#(cd(dd(da(x1)))) | (141) |
cc#(cc(cd(dd(dc(x1))))) | → | bb#(bc(x1)) | (204) |
cc#(cc(cd(dd(dc(x1))))) | → | bc#(x1) | (205) |
bc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(x1)) | (176) |
bc#(cc(cd(dd(dd(x1))))) | → | bd#(x1) | (177) |
bd#(dd(da(aa(aa(x1))))) | → | cd#(dd(da(x1))) | (142) |
cd#(dd(da(aa(aa(x1))))) | → | cc#(cd(dd(da(x1)))) | (149) |
cc#(cc(cd(dd(db(x1))))) | → | bb#(bd(dd(db(x1)))) | (252) |
cc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(dd(dd(x1)))) | (256) |
cc#(cc(cd(dd(dc(x1))))) | → | bb#(bd(dd(dc(x1)))) | (260) |
cd#(dd(da(aa(aa(x1))))) | → | cd#(dd(da(x1))) | (150) |
bc#(cc(cd(dd(dc(x1))))) | → | bb#(bc(x1)) | (180) |
bc#(cc(cd(dd(dc(x1))))) | → | bc#(x1) | (181) |
bc#(cc(cd(dd(db(x1))))) | → | bb#(bd(dd(db(x1)))) | (220) |
bc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(dd(dd(x1)))) | (224) |
bc#(cc(cd(dd(dc(x1))))) | → | bb#(bd(dd(dc(x1)))) | (228) |
bc#(cc(cd(dd(da(x1))))) | → | bb#(bd(dd(da(x1)))) | (232) |
bc#(cc(cd(dd(da(x1))))) | → | bd#(dd(da(x1))) | (233) |
bc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(bb(bb(bb(bb(x1))))) | (282) |
bc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(bb(bb(bb(x1)))) | (283) |
bc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(bb(bb(x1))) | (284) |
bc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(bb(x1)) | (285) |
bc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(x1) | (286) |
bc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bb#(bb(bb(bb(bd(x1))))) | (287) |
bc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bb#(bb(bb(bd(x1)))) | (288) |
bc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bb#(bb(bd(x1))) | (289) |
bc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bb#(bd(x1)) | (290) |
bc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bd#(x1) | (291) |
bc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bb#(bb(bb(bb(bc(x1))))) | (292) |
bc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bb#(bb(bb(bc(x1)))) | (293) |
bc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bb#(bb(bc(x1))) | (294) |
bc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bb#(bc(x1)) | (295) |
bc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bc#(x1) | (296) |
dc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bb#(bb(bb(bc(x1)))) | (305) |
dc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bb#(bb(bc(x1))) | (306) |
dc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bb#(bc(x1)) | (307) |
dc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bc#(x1) | (308) |
cc#(cc(cd(dd(da(x1))))) | → | bb#(bd(dd(da(x1)))) | (264) |
cc#(cc(cd(dd(da(x1))))) | → | bd#(dd(da(x1))) | (265) |
dc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(x1)) | (188) |
dc#(cc(cd(dd(dd(x1))))) | → | bd#(x1) | (189) |
dc#(cc(cd(dd(dc(x1))))) | → | bb#(bc(x1)) | (192) |
dc#(cc(cd(dd(dc(x1))))) | → | bc#(x1) | (193) |
dc#(cc(cd(dd(db(x1))))) | → | bb#(bd(dd(db(x1)))) | (236) |
dc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(dd(dd(x1)))) | (240) |
dc#(cc(cd(dd(dc(x1))))) | → | bb#(bd(dd(dc(x1)))) | (244) |
dc#(cc(cd(dd(da(x1))))) | → | bb#(bd(dd(da(x1)))) | (248) |
dc#(cc(cd(dd(da(x1))))) | → | bd#(dd(da(x1))) | (249) |
[bd(x1)] | = | 1 · x1 |
[dd(x1)] | = | 1 · x1 |
[da(x1)] | = | 1 · x1 |
[aa(x1)] | = | 1 · x1 |
[bc(x1)] | = | 1 · x1 |
[cc(x1)] | = | 1 · x1 |
[cd(x1)] | = | 1 · x1 |
[db(x1)] | = | 1 · x1 |
[bb(x1)] | = | 1 · x1 |
[dc(x1)] | = | 1 · x1 |
[ca(x1)] | = | 1 · x1 |
[ad(x1)] | = | 1 · x1 |
[ba(x1)] | = | 1 · x1 |
[dc#(x1)] | = | 1 · x1 |
[bb#(x1)] | = | 1 · x1 |
[cc#(x1)] | = | 1 · x1 |
[cd#(x1)] | = | 1 · x1 |
[bd#(x1)] | = | 1 · x1 |
[bc#(x1)] | = | 1 · x1 |
bd(dd(da(aa(aa(x1))))) | → | bc(cc(cd(dd(da(x1))))) | (46) |
cd(dd(da(aa(aa(x1))))) | → | cc(cc(cd(dd(da(x1))))) | (54) |
cc(cc(cd(dd(db(x1))))) | → | cd(dd(db(bb(bb(x1))))) | (83) |
cc(cc(cd(dd(dd(x1))))) | → | cd(dd(db(bb(bd(x1))))) | (84) |
cc(cc(cd(dd(dc(x1))))) | → | cd(dd(db(bb(bc(x1))))) | (85) |
cc(cc(cd(dd(db(x1))))) | → | cd(dd(db(bb(bd(dd(db(x1))))))) | (99) |
cc(cc(cd(dd(dd(x1))))) | → | cd(dd(db(bb(bd(dd(dd(x1))))))) | (100) |
cc(cc(cd(dd(dc(x1))))) | → | cd(dd(db(bb(bd(dd(dc(x1))))))) | (101) |
cc(cc(cd(dd(da(x1))))) | → | cd(dd(db(bb(bd(dd(da(x1))))))) | (102) |
bc(cc(cd(dd(db(x1))))) | → | bd(dd(db(bb(bb(x1))))) | (75) |
bc(cc(cd(dd(dd(x1))))) | → | bd(dd(db(bb(bd(x1))))) | (76) |
bc(cc(cd(dd(dc(x1))))) | → | bd(dd(db(bb(bc(x1))))) | (77) |
bc(cc(cd(dd(db(x1))))) | → | bd(dd(db(bb(bd(dd(db(x1))))))) | (91) |
bc(cc(cd(dd(dd(x1))))) | → | bd(dd(db(bb(bd(dd(dd(x1))))))) | (92) |
bc(cc(cd(dd(dc(x1))))) | → | bd(dd(db(bb(bd(dd(dc(x1))))))) | (93) |
bc(cc(cd(dd(da(x1))))) | → | bd(dd(db(bb(bd(dd(da(x1))))))) | (94) |
bc(cc(ca(aa(ad(dd(db(x1))))))) | → | bb(bb(bb(bb(bb(x1))))) | (107) |
bc(cc(ca(aa(ad(dd(dd(x1))))))) | → | bb(bb(bb(bb(bd(x1))))) | (108) |
bc(cc(ca(aa(ad(dd(dc(x1))))))) | → | bb(bb(bb(bb(bc(x1))))) | (109) |
bb(bd(dd(db(bb(bc(x1)))))) | → | bb(bd(dd(dc(cc(cc(x1)))))) | (37) |
bb(bd(dd(db(bb(bd(x1)))))) | → | bb(bd(dd(dc(cc(cd(x1)))))) | (36) |
bb(bd(dd(db(bb(ba(x1)))))) | → | bb(bd(dd(dc(cc(ca(x1)))))) | (38) |
dc(cc(cd(dd(db(x1))))) | → | dd(dd(db(bb(bb(x1))))) | (79) |
dc(cc(cd(dd(dd(x1))))) | → | dd(dd(db(bb(bd(x1))))) | (80) |
dc(cc(cd(dd(dc(x1))))) | → | dd(dd(db(bb(bc(x1))))) | (81) |
dc(cc(cd(dd(db(x1))))) | → | dd(dd(db(bb(bd(dd(db(x1))))))) | (95) |
dc(cc(cd(dd(dd(x1))))) | → | dd(dd(db(bb(bd(dd(dd(x1))))))) | (96) |
dc(cc(cd(dd(dc(x1))))) | → | dd(dd(db(bb(bd(dd(dc(x1))))))) | (97) |
dc(cc(cd(dd(da(x1))))) | → | dd(dd(db(bb(bd(dd(da(x1))))))) | (98) |
dc(cc(ca(aa(ad(dd(db(x1))))))) | → | db(bb(bb(bb(bb(x1))))) | (111) |
dc(cc(ca(aa(ad(dd(dd(x1))))))) | → | db(bb(bb(bb(bd(x1))))) | (112) |
dc(cc(ca(aa(ad(dd(dc(x1))))))) | → | db(bb(bb(bb(bc(x1))))) | (113) |
dd(dd(da(aa(aa(x1))))) | → | dc(cc(cd(dd(da(x1))))) | (50) |
[bb#(x1)] | = | 1 · x1 |
[bd(x1)] | = | 1 · x1 |
[dd(x1)] | = | 1 · x1 |
[db(x1)] | = | 1 · x1 |
[bb(x1)] | = | 1 · x1 |
[dc#(x1)] | = | 1 · x1 |
[cc(x1)] | = | 1 · x1 |
[cd(x1)] | = | 1 · x1 |
[dc(x1)] | = | 1 · x1 |
[cc#(x1)] | = | 1 · x1 |
[cd#(x1)] | = | 0 |
[da(x1)] | = | 0 |
[aa(x1)] | = | 1 · x1 |
[bc(x1)] | = | 1 · x1 |
[bd#(x1)] | = | 0 |
[bc#(x1)] | = | 1 · x1 |
[ba(x1)] | = | 1 + 1 · x1 |
[ca(x1)] | = | 1 + 1 · x1 |
[ad(x1)] | = | 1 · x1 |
dc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(bb(bb(bb(x1)))) | (297) |
dc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(bb(bb(x1))) | (298) |
dc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(bb(x1)) | (299) |
dc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(x1) | (300) |
dc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bb#(bb(bb(bd(x1)))) | (301) |
dc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bb#(bb(bd(x1))) | (302) |
dc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bb#(bd(x1)) | (303) |
dc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bd#(x1) | (304) |
bc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(bb(bb(bb(bb(x1))))) | (282) |
bc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(bb(bb(bb(x1)))) | (283) |
bc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(bb(bb(x1))) | (284) |
bc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(bb(x1)) | (285) |
bc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(x1) | (286) |
bc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bb#(bb(bb(bb(bd(x1))))) | (287) |
bc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bb#(bb(bb(bd(x1)))) | (288) |
bc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bb#(bb(bd(x1))) | (289) |
bc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bb#(bd(x1)) | (290) |
bc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bd#(x1) | (291) |
bc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bb#(bb(bb(bb(bc(x1))))) | (292) |
bc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bb#(bb(bb(bc(x1)))) | (293) |
bc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bb#(bb(bc(x1))) | (294) |
bc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bb#(bc(x1)) | (295) |
bc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bc#(x1) | (296) |
dc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bb#(bb(bb(bc(x1)))) | (305) |
dc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bb#(bb(bc(x1))) | (306) |
dc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bb#(bc(x1)) | (307) |
dc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bc#(x1) | (308) |
The dependency pairs are split into 1 component.
dc#(cc(cd(dd(db(x1))))) | → | bb#(bb(x1)) | (184) |
bb#(bd(dd(db(bb(bd(x1)))))) | → | bb#(bd(dd(dc(cc(cd(x1)))))) | (123) |
bb#(bd(dd(db(bb(bd(x1)))))) | → | dc#(cc(cd(x1))) | (126) |
dc#(cc(cd(dd(db(x1))))) | → | bb#(x1) | (185) |
bb#(bd(dd(db(bb(bd(x1)))))) | → | cc#(cd(x1)) | (127) |
cc#(cc(cd(dd(db(x1))))) | → | bb#(bb(x1)) | (196) |
bb#(bd(dd(db(bb(bd(x1)))))) | → | cd#(x1) | (128) |
cd#(dd(da(aa(aa(x1))))) | → | cc#(cc(cd(dd(da(x1))))) | (148) |
cc#(cc(cd(dd(db(x1))))) | → | bb#(x1) | (197) |
bb#(bd(dd(db(bb(bc(x1)))))) | → | bb#(bd(dd(dc(cc(cc(x1)))))) | (129) |
bb#(bd(dd(db(bb(bc(x1)))))) | → | dc#(cc(cc(x1))) | (132) |
dc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(x1)) | (188) |
bb#(bd(dd(db(bb(bc(x1)))))) | → | cc#(cc(x1)) | (133) |
cc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(x1)) | (200) |
bb#(bd(dd(db(bb(bc(x1)))))) | → | cc#(x1) | (134) |
cc#(cc(cd(dd(dd(x1))))) | → | bd#(x1) | (201) |
bd#(dd(da(aa(aa(x1))))) | → | bc#(cc(cd(dd(da(x1))))) | (140) |
bc#(cc(cd(dd(db(x1))))) | → | bb#(bb(x1)) | (172) |
bc#(cc(cd(dd(db(x1))))) | → | bb#(x1) | (173) |
bb#(bd(dd(db(bb(ba(x1)))))) | → | bb#(bd(dd(dc(cc(ca(x1)))))) | (135) |
bc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(x1)) | (176) |
bc#(cc(cd(dd(dd(x1))))) | → | bd#(x1) | (177) |
bd#(dd(da(aa(aa(x1))))) | → | cc#(cd(dd(da(x1)))) | (141) |
cc#(cc(cd(dd(dc(x1))))) | → | bb#(bc(x1)) | (204) |
cc#(cc(cd(dd(dc(x1))))) | → | bc#(x1) | (205) |
bc#(cc(cd(dd(dc(x1))))) | → | bb#(bc(x1)) | (180) |
bc#(cc(cd(dd(dc(x1))))) | → | bc#(x1) | (181) |
bc#(cc(cd(dd(db(x1))))) | → | bb#(bd(dd(db(x1)))) | (220) |
bc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(dd(dd(x1)))) | (224) |
bc#(cc(cd(dd(dc(x1))))) | → | bb#(bd(dd(dc(x1)))) | (228) |
bc#(cc(cd(dd(da(x1))))) | → | bb#(bd(dd(da(x1)))) | (232) |
bc#(cc(cd(dd(da(x1))))) | → | bd#(dd(da(x1))) | (233) |
bd#(dd(da(aa(aa(x1))))) | → | cd#(dd(da(x1))) | (142) |
cd#(dd(da(aa(aa(x1))))) | → | cc#(cd(dd(da(x1)))) | (149) |
cc#(cc(cd(dd(db(x1))))) | → | bb#(bd(dd(db(x1)))) | (252) |
cc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(dd(dd(x1)))) | (256) |
cc#(cc(cd(dd(dc(x1))))) | → | bb#(bd(dd(dc(x1)))) | (260) |
cd#(dd(da(aa(aa(x1))))) | → | cd#(dd(da(x1))) | (150) |
cc#(cc(cd(dd(da(x1))))) | → | bb#(bd(dd(da(x1)))) | (264) |
cc#(cc(cd(dd(da(x1))))) | → | bd#(dd(da(x1))) | (265) |
dc#(cc(cd(dd(dd(x1))))) | → | bd#(x1) | (189) |
dc#(cc(cd(dd(dc(x1))))) | → | bb#(bc(x1)) | (192) |
dc#(cc(cd(dd(dc(x1))))) | → | bc#(x1) | (193) |
dc#(cc(cd(dd(db(x1))))) | → | bb#(bd(dd(db(x1)))) | (236) |
dc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(dd(dd(x1)))) | (240) |
dc#(cc(cd(dd(dc(x1))))) | → | bb#(bd(dd(dc(x1)))) | (244) |
dc#(cc(cd(dd(da(x1))))) | → | bb#(bd(dd(da(x1)))) | (248) |
dc#(cc(cd(dd(da(x1))))) | → | bd#(dd(da(x1))) | (249) |
[dc#(x1)] | = | 1 · x1 |
[cc(x1)] | = | 1 · x1 |
[cd(x1)] | = | 1 · x1 |
[dd(x1)] | = | 1 · x1 |
[db(x1)] | = | 1 · x1 |
[bb#(x1)] | = | 1 · x1 |
[bb(x1)] | = | 1 · x1 |
[bd(x1)] | = | 1 · x1 |
[dc(x1)] | = | 1 · x1 |
[cc#(x1)] | = | 1 · x1 |
[cd#(x1)] | = | 0 |
[da(x1)] | = | 0 |
[aa(x1)] | = | 1 · x1 |
[bc(x1)] | = | 1 · x1 |
[bd#(x1)] | = | 1 · x1 |
[bc#(x1)] | = | 1 · x1 |
[ba(x1)] | = | 1 + 1 · x1 |
[ca(x1)] | = | 1 · x1 |
[ad(x1)] | = | 1 · x1 |
bb#(bd(dd(db(bb(ba(x1)))))) | → | bb#(bd(dd(dc(cc(ca(x1)))))) | (135) |
[dc#(x1)] | = | 1 · x1 |
[cc(x1)] | = | 1 · x1 |
[cd(x1)] | = | 1 · x1 |
[dd(x1)] | = | 1 · x1 |
[db(x1)] | = | 1 · x1 |
[bb#(x1)] | = | 1 · x1 |
[bb(x1)] | = | 1 · x1 |
[bd(x1)] | = | 1 · x1 |
[dc(x1)] | = | 1 · x1 |
[cc#(x1)] | = | 1 · x1 |
[cd#(x1)] | = | 1 · x1 |
[da(x1)] | = | 1 · x1 |
[aa(x1)] | = | 1 + 1 · x1 |
[bc(x1)] | = | 1 · x1 |
[bd#(x1)] | = | 1 · x1 |
[bc#(x1)] | = | 1 · x1 |
[ba(x1)] | = | 1 · x1 |
[ca(x1)] | = | 1 · x1 |
[ad(x1)] | = | 1 · x1 |
cd#(dd(da(aa(aa(x1))))) | → | cc#(cc(cd(dd(da(x1))))) | (148) |
bd#(dd(da(aa(aa(x1))))) | → | bc#(cc(cd(dd(da(x1))))) | (140) |
bd#(dd(da(aa(aa(x1))))) | → | cc#(cd(dd(da(x1)))) | (141) |
bd#(dd(da(aa(aa(x1))))) | → | cd#(dd(da(x1))) | (142) |
cd#(dd(da(aa(aa(x1))))) | → | cc#(cd(dd(da(x1)))) | (149) |
cd#(dd(da(aa(aa(x1))))) | → | cd#(dd(da(x1))) | (150) |
The dependency pairs are split into 1 component.
bb#(bd(dd(db(bb(bd(x1)))))) | → | bb#(bd(dd(dc(cc(cd(x1)))))) | (123) |
bb#(bd(dd(db(bb(bd(x1)))))) | → | dc#(cc(cd(x1))) | (126) |
dc#(cc(cd(dd(db(x1))))) | → | bb#(bb(x1)) | (184) |
bb#(bd(dd(db(bb(bd(x1)))))) | → | cc#(cd(x1)) | (127) |
cc#(cc(cd(dd(db(x1))))) | → | bb#(bb(x1)) | (196) |
bb#(bd(dd(db(bb(bc(x1)))))) | → | bb#(bd(dd(dc(cc(cc(x1)))))) | (129) |
bb#(bd(dd(db(bb(bc(x1)))))) | → | dc#(cc(cc(x1))) | (132) |
dc#(cc(cd(dd(db(x1))))) | → | bb#(x1) | (185) |
bb#(bd(dd(db(bb(bc(x1)))))) | → | cc#(cc(x1)) | (133) |
cc#(cc(cd(dd(db(x1))))) | → | bb#(x1) | (197) |
bb#(bd(dd(db(bb(bc(x1)))))) | → | cc#(x1) | (134) |
cc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(x1)) | (200) |
cc#(cc(cd(dd(dc(x1))))) | → | bb#(bc(x1)) | (204) |
cc#(cc(cd(dd(dc(x1))))) | → | bc#(x1) | (205) |
bc#(cc(cd(dd(db(x1))))) | → | bb#(bb(x1)) | (172) |
bc#(cc(cd(dd(db(x1))))) | → | bb#(x1) | (173) |
bc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(x1)) | (176) |
bc#(cc(cd(dd(dc(x1))))) | → | bb#(bc(x1)) | (180) |
bc#(cc(cd(dd(dc(x1))))) | → | bc#(x1) | (181) |
bc#(cc(cd(dd(db(x1))))) | → | bb#(bd(dd(db(x1)))) | (220) |
bc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(dd(dd(x1)))) | (224) |
bc#(cc(cd(dd(dc(x1))))) | → | bb#(bd(dd(dc(x1)))) | (228) |
bc#(cc(cd(dd(da(x1))))) | → | bb#(bd(dd(da(x1)))) | (232) |
cc#(cc(cd(dd(db(x1))))) | → | bb#(bd(dd(db(x1)))) | (252) |
cc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(dd(dd(x1)))) | (256) |
cc#(cc(cd(dd(dc(x1))))) | → | bb#(bd(dd(dc(x1)))) | (260) |
cc#(cc(cd(dd(da(x1))))) | → | bb#(bd(dd(da(x1)))) | (264) |
dc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(x1)) | (188) |
dc#(cc(cd(dd(dc(x1))))) | → | bb#(bc(x1)) | (192) |
dc#(cc(cd(dd(dc(x1))))) | → | bc#(x1) | (193) |
dc#(cc(cd(dd(db(x1))))) | → | bb#(bd(dd(db(x1)))) | (236) |
dc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(dd(dd(x1)))) | (240) |
dc#(cc(cd(dd(dc(x1))))) | → | bb#(bd(dd(dc(x1)))) | (244) |
dc#(cc(cd(dd(da(x1))))) | → | bb#(bd(dd(da(x1)))) | (248) |
[bb#(x1)] | = | 1 · x1 |
[bd(x1)] | = | 1 · x1 |
[dd(x1)] | = | 1 · x1 |
[db(x1)] | = | 1 + 1 · x1 |
[bb(x1)] | = | 1 + 1 · x1 |
[dc(x1)] | = | 1 · x1 |
[cc(x1)] | = | 1 + 1 · x1 |
[cd(x1)] | = | 1 + 1 · x1 |
[dc#(x1)] | = | 1 · x1 |
[cc#(x1)] | = | 1 · x1 |
[bc(x1)] | = | 1 · x1 |
[bc#(x1)] | = | 1 · x1 |
[da(x1)] | = | 1 · x1 |
[aa(x1)] | = | 1 + 1 · x1 |
[ca(x1)] | = | 1 + 1 · x1 |
[ad(x1)] | = | 1 + 1 · x1 |
[ba(x1)] | = | 1 · x1 |
dc#(cc(cd(dd(db(x1))))) | → | bb#(bb(x1)) | (184) |
bb#(bd(dd(db(bb(bd(x1)))))) | → | cc#(cd(x1)) | (127) |
cc#(cc(cd(dd(db(x1))))) | → | bb#(bb(x1)) | (196) |
dc#(cc(cd(dd(db(x1))))) | → | bb#(x1) | (185) |
bb#(bd(dd(db(bb(bc(x1)))))) | → | cc#(cc(x1)) | (133) |
cc#(cc(cd(dd(db(x1))))) | → | bb#(x1) | (197) |
bb#(bd(dd(db(bb(bc(x1)))))) | → | cc#(x1) | (134) |
cc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(x1)) | (200) |
cc#(cc(cd(dd(dc(x1))))) | → | bb#(bc(x1)) | (204) |
cc#(cc(cd(dd(dc(x1))))) | → | bc#(x1) | (205) |
bc#(cc(cd(dd(db(x1))))) | → | bb#(bb(x1)) | (172) |
bc#(cc(cd(dd(db(x1))))) | → | bb#(x1) | (173) |
bc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(x1)) | (176) |
bc#(cc(cd(dd(dc(x1))))) | → | bb#(bc(x1)) | (180) |
bc#(cc(cd(dd(dc(x1))))) | → | bc#(x1) | (181) |
bc#(cc(cd(dd(db(x1))))) | → | bb#(bd(dd(db(x1)))) | (220) |
bc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(dd(dd(x1)))) | (224) |
bc#(cc(cd(dd(dc(x1))))) | → | bb#(bd(dd(dc(x1)))) | (228) |
bc#(cc(cd(dd(da(x1))))) | → | bb#(bd(dd(da(x1)))) | (232) |
cc#(cc(cd(dd(db(x1))))) | → | bb#(bd(dd(db(x1)))) | (252) |
cc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(dd(dd(x1)))) | (256) |
cc#(cc(cd(dd(dc(x1))))) | → | bb#(bd(dd(dc(x1)))) | (260) |
cc#(cc(cd(dd(da(x1))))) | → | bb#(bd(dd(da(x1)))) | (264) |
dc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(x1)) | (188) |
dc#(cc(cd(dd(dc(x1))))) | → | bb#(bc(x1)) | (192) |
dc#(cc(cd(dd(dc(x1))))) | → | bc#(x1) | (193) |
dc#(cc(cd(dd(db(x1))))) | → | bb#(bd(dd(db(x1)))) | (236) |
dc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(dd(dd(x1)))) | (240) |
dc#(cc(cd(dd(dc(x1))))) | → | bb#(bd(dd(dc(x1)))) | (244) |
dc#(cc(cd(dd(da(x1))))) | → | bb#(bd(dd(da(x1)))) | (248) |
The dependency pairs are split into 1 component.
bb#(bd(dd(db(bb(bc(x1)))))) | → | bb#(bd(dd(dc(cc(cc(x1)))))) | (129) |
bb#(bd(dd(db(bb(bd(x1)))))) | → | bb#(bd(dd(dc(cc(cd(x1)))))) | (123) |
[bb#(x1)] | = |
|
||||||||||||||||||
[bd(x1)] | = |
|
||||||||||||||||||
[dd(x1)] | = |
|
||||||||||||||||||
[db(x1)] | = |
|
||||||||||||||||||
[bb(x1)] | = |
|
||||||||||||||||||
[bc(x1)] | = |
|
||||||||||||||||||
[dc(x1)] | = |
|
||||||||||||||||||
[cc(x1)] | = |
|
||||||||||||||||||
[cd(x1)] | = |
|
||||||||||||||||||
[da(x1)] | = |
|
||||||||||||||||||
[ca(x1)] | = |
|
||||||||||||||||||
[aa(x1)] | = |
|
||||||||||||||||||
[ad(x1)] | = |
|
||||||||||||||||||
[ba(x1)] | = |
|
dc(cc(cd(dd(db(x1))))) | → | dd(dd(db(bb(bb(x1))))) | (79) |
dc(cc(cd(dd(dd(x1))))) | → | dd(dd(db(bb(bd(x1))))) | (80) |
dc(cc(cd(dd(dc(x1))))) | → | dd(dd(db(bb(bc(x1))))) | (81) |
dc(cc(cd(dd(db(x1))))) | → | dd(dd(db(bb(bd(dd(db(x1))))))) | (95) |
dc(cc(cd(dd(dd(x1))))) | → | dd(dd(db(bb(bd(dd(dd(x1))))))) | (96) |
dc(cc(cd(dd(dc(x1))))) | → | dd(dd(db(bb(bd(dd(dc(x1))))))) | (97) |
dc(cc(cd(dd(da(x1))))) | → | dd(dd(db(bb(bd(dd(da(x1))))))) | (98) |
dc(cc(ca(aa(ad(dd(db(x1))))))) | → | db(bb(bb(bb(bb(x1))))) | (111) |
dc(cc(ca(aa(ad(dd(dd(x1))))))) | → | db(bb(bb(bb(bd(x1))))) | (112) |
dc(cc(ca(aa(ad(dd(dc(x1))))))) | → | db(bb(bb(bb(bc(x1))))) | (113) |
dd(dd(da(aa(aa(x1))))) | → | dc(cc(cd(dd(da(x1))))) | (50) |
bd(dd(da(aa(aa(x1))))) | → | bc(cc(cd(dd(da(x1))))) | (46) |
bb(bd(dd(db(bb(bd(x1)))))) | → | bb(bd(dd(dc(cc(cd(x1)))))) | (36) |
bb(bd(dd(db(bb(bc(x1)))))) | → | bb(bd(dd(dc(cc(cc(x1)))))) | (37) |
bb(bd(dd(db(bb(ba(x1)))))) | → | bb(bd(dd(dc(cc(ca(x1)))))) | (38) |
bc(cc(cd(dd(db(x1))))) | → | bd(dd(db(bb(bb(x1))))) | (75) |
bc(cc(cd(dd(dd(x1))))) | → | bd(dd(db(bb(bd(x1))))) | (76) |
bc(cc(cd(dd(dc(x1))))) | → | bd(dd(db(bb(bc(x1))))) | (77) |
bc(cc(cd(dd(db(x1))))) | → | bd(dd(db(bb(bd(dd(db(x1))))))) | (91) |
bc(cc(cd(dd(dd(x1))))) | → | bd(dd(db(bb(bd(dd(dd(x1))))))) | (92) |
bc(cc(cd(dd(dc(x1))))) | → | bd(dd(db(bb(bd(dd(dc(x1))))))) | (93) |
bc(cc(cd(dd(da(x1))))) | → | bd(dd(db(bb(bd(dd(da(x1))))))) | (94) |
bc(cc(ca(aa(ad(dd(db(x1))))))) | → | bb(bb(bb(bb(bb(x1))))) | (107) |
bc(cc(ca(aa(ad(dd(dd(x1))))))) | → | bb(bb(bb(bb(bd(x1))))) | (108) |
bc(cc(ca(aa(ad(dd(dc(x1))))))) | → | bb(bb(bb(bb(bc(x1))))) | (109) |
bb#(bd(dd(db(bb(bc(x1)))))) | → | bb#(bd(dd(dc(cc(cc(x1)))))) | (129) |
bb#(bd(dd(db(bb(bd(x1)))))) | → | bb#(bd(dd(dc(cc(cd(x1)))))) | (123) |
There are no pairs anymore.