The rewrite relation of the following TRS is considered.
| b(b(d(d(b(b(x1)))))) | → | c(c(d(d(b(b(x1)))))) | (1) |
| b(b(a(a(c(c(x1)))))) | → | b(b(c(c(x1)))) | (2) |
| a(a(d(d(x1)))) | → | d(d(c(c(x1)))) | (3) |
| b(b(b(b(b(b(x1)))))) | → | a(a(b(b(c(c(x1)))))) | (4) |
| d(d(c(c(x1)))) | → | b(b(d(d(x1)))) | (5) |
| d(d(c(c(x1)))) | → | d(d(b(b(d(d(x1)))))) | (6) |
| d(d(a(a(c(c(x1)))))) | → | b(b(b(b(x1)))) | (7) |
| b(b(d(d(b(b(x1)))))) | → | b(b(d(d(c(c(x1)))))) | (8) |
| c(c(a(a(b(b(x1)))))) | → | c(c(b(b(x1)))) | (9) |
| d(d(a(a(x1)))) | → | c(c(d(d(x1)))) | (10) |
| b(b(b(b(b(b(x1)))))) | → | c(c(b(b(a(a(x1)))))) | (11) |
| c(c(d(d(x1)))) | → | d(d(b(b(x1)))) | (12) |
| c(c(d(d(x1)))) | → | d(d(b(b(d(d(x1)))))) | (13) |
| c(c(a(a(d(d(x1)))))) | → | b(b(b(b(x1)))) | (14) |
{b(☐), d(☐), c(☐), a(☐)}
We obtain the transformed TRS| b(b(d(d(b(b(x1)))))) | → | b(b(d(d(c(c(x1)))))) | (8) |
| c(c(a(a(b(b(x1)))))) | → | c(c(b(b(x1)))) | (9) |
| b(d(d(a(a(x1))))) | → | b(c(c(d(d(x1))))) | (15) |
| d(d(d(a(a(x1))))) | → | d(c(c(d(d(x1))))) | (16) |
| c(d(d(a(a(x1))))) | → | c(c(c(d(d(x1))))) | (17) |
| a(d(d(a(a(x1))))) | → | a(c(c(d(d(x1))))) | (18) |
| b(b(b(b(b(b(b(x1))))))) | → | b(c(c(b(b(a(a(x1))))))) | (19) |
| d(b(b(b(b(b(b(x1))))))) | → | d(c(c(b(b(a(a(x1))))))) | (20) |
| c(b(b(b(b(b(b(x1))))))) | → | c(c(c(b(b(a(a(x1))))))) | (21) |
| a(b(b(b(b(b(b(x1))))))) | → | a(c(c(b(b(a(a(x1))))))) | (22) |
| b(c(c(d(d(x1))))) | → | b(d(d(b(b(x1))))) | (23) |
| d(c(c(d(d(x1))))) | → | d(d(d(b(b(x1))))) | (24) |
| c(c(c(d(d(x1))))) | → | c(d(d(b(b(x1))))) | (25) |
| a(c(c(d(d(x1))))) | → | a(d(d(b(b(x1))))) | (26) |
| b(c(c(d(d(x1))))) | → | b(d(d(b(b(d(d(x1))))))) | (27) |
| d(c(c(d(d(x1))))) | → | d(d(d(b(b(d(d(x1))))))) | (28) |
| c(c(c(d(d(x1))))) | → | c(d(d(b(b(d(d(x1))))))) | (29) |
| a(c(c(d(d(x1))))) | → | a(d(d(b(b(d(d(x1))))))) | (30) |
| b(c(c(a(a(d(d(x1))))))) | → | b(b(b(b(b(x1))))) | (31) |
| d(c(c(a(a(d(d(x1))))))) | → | d(b(b(b(b(x1))))) | (32) |
| c(c(c(a(a(d(d(x1))))))) | → | c(b(b(b(b(x1))))) | (33) |
| a(c(c(a(a(d(d(x1))))))) | → | a(b(b(b(b(x1))))) | (34) |
Root-labeling is applied.
We obtain the labeled TRS| bb(bd(dd(db(bb(bb(x1)))))) | → | bb(bd(dd(dc(cc(cb(x1)))))) | (35) |
| bb(bd(dd(db(bb(bd(x1)))))) | → | bb(bd(dd(dc(cc(cd(x1)))))) | (36) |
| bb(bd(dd(db(bb(bc(x1)))))) | → | bb(bd(dd(dc(cc(cc(x1)))))) | (37) |
| bb(bd(dd(db(bb(ba(x1)))))) | → | bb(bd(dd(dc(cc(ca(x1)))))) | (38) |
| cc(ca(aa(ab(bb(bb(x1)))))) | → | cc(cb(bb(bb(x1)))) | (39) |
| cc(ca(aa(ab(bb(bd(x1)))))) | → | cc(cb(bb(bd(x1)))) | (40) |
| cc(ca(aa(ab(bb(bc(x1)))))) | → | cc(cb(bb(bc(x1)))) | (41) |
| cc(ca(aa(ab(bb(ba(x1)))))) | → | cc(cb(bb(ba(x1)))) | (42) |
| bd(dd(da(aa(ab(x1))))) | → | bc(cc(cd(dd(db(x1))))) | (43) |
| bd(dd(da(aa(ad(x1))))) | → | bc(cc(cd(dd(dd(x1))))) | (44) |
| bd(dd(da(aa(ac(x1))))) | → | bc(cc(cd(dd(dc(x1))))) | (45) |
| bd(dd(da(aa(aa(x1))))) | → | bc(cc(cd(dd(da(x1))))) | (46) |
| dd(dd(da(aa(ab(x1))))) | → | dc(cc(cd(dd(db(x1))))) | (47) |
| dd(dd(da(aa(ad(x1))))) | → | dc(cc(cd(dd(dd(x1))))) | (48) |
| dd(dd(da(aa(ac(x1))))) | → | dc(cc(cd(dd(dc(x1))))) | (49) |
| dd(dd(da(aa(aa(x1))))) | → | dc(cc(cd(dd(da(x1))))) | (50) |
| cd(dd(da(aa(ab(x1))))) | → | cc(cc(cd(dd(db(x1))))) | (51) |
| cd(dd(da(aa(ad(x1))))) | → | cc(cc(cd(dd(dd(x1))))) | (52) |
| cd(dd(da(aa(ac(x1))))) | → | cc(cc(cd(dd(dc(x1))))) | (53) |
| cd(dd(da(aa(aa(x1))))) | → | cc(cc(cd(dd(da(x1))))) | (54) |
| ad(dd(da(aa(ab(x1))))) | → | ac(cc(cd(dd(db(x1))))) | (55) |
| ad(dd(da(aa(ad(x1))))) | → | ac(cc(cd(dd(dd(x1))))) | (56) |
| ad(dd(da(aa(ac(x1))))) | → | ac(cc(cd(dd(dc(x1))))) | (57) |
| ad(dd(da(aa(aa(x1))))) | → | ac(cc(cd(dd(da(x1))))) | (58) |
| bb(bb(bb(bb(bb(bb(bb(x1))))))) | → | bc(cc(cb(bb(ba(aa(ab(x1))))))) | (59) |
| bb(bb(bb(bb(bb(bb(bd(x1))))))) | → | bc(cc(cb(bb(ba(aa(ad(x1))))))) | (60) |
| bb(bb(bb(bb(bb(bb(bc(x1))))))) | → | bc(cc(cb(bb(ba(aa(ac(x1))))))) | (61) |
| bb(bb(bb(bb(bb(bb(ba(x1))))))) | → | bc(cc(cb(bb(ba(aa(aa(x1))))))) | (62) |
| db(bb(bb(bb(bb(bb(bb(x1))))))) | → | dc(cc(cb(bb(ba(aa(ab(x1))))))) | (63) |
| db(bb(bb(bb(bb(bb(bd(x1))))))) | → | dc(cc(cb(bb(ba(aa(ad(x1))))))) | (64) |
| db(bb(bb(bb(bb(bb(bc(x1))))))) | → | dc(cc(cb(bb(ba(aa(ac(x1))))))) | (65) |
| db(bb(bb(bb(bb(bb(ba(x1))))))) | → | dc(cc(cb(bb(ba(aa(aa(x1))))))) | (66) |
| cb(bb(bb(bb(bb(bb(bb(x1))))))) | → | cc(cc(cb(bb(ba(aa(ab(x1))))))) | (67) |
| cb(bb(bb(bb(bb(bb(bd(x1))))))) | → | cc(cc(cb(bb(ba(aa(ad(x1))))))) | (68) |
| cb(bb(bb(bb(bb(bb(bc(x1))))))) | → | cc(cc(cb(bb(ba(aa(ac(x1))))))) | (69) |
| cb(bb(bb(bb(bb(bb(ba(x1))))))) | → | cc(cc(cb(bb(ba(aa(aa(x1))))))) | (70) |
| ab(bb(bb(bb(bb(bb(bb(x1))))))) | → | ac(cc(cb(bb(ba(aa(ab(x1))))))) | (71) |
| ab(bb(bb(bb(bb(bb(bd(x1))))))) | → | ac(cc(cb(bb(ba(aa(ad(x1))))))) | (72) |
| ab(bb(bb(bb(bb(bb(bc(x1))))))) | → | ac(cc(cb(bb(ba(aa(ac(x1))))))) | (73) |
| ab(bb(bb(bb(bb(bb(ba(x1))))))) | → | ac(cc(cb(bb(ba(aa(aa(x1))))))) | (74) |
| bc(cc(cd(dd(db(x1))))) | → | bd(dd(db(bb(bb(x1))))) | (75) |
| bc(cc(cd(dd(dd(x1))))) | → | bd(dd(db(bb(bd(x1))))) | (76) |
| bc(cc(cd(dd(dc(x1))))) | → | bd(dd(db(bb(bc(x1))))) | (77) |
| bc(cc(cd(dd(da(x1))))) | → | bd(dd(db(bb(ba(x1))))) | (78) |
| dc(cc(cd(dd(db(x1))))) | → | dd(dd(db(bb(bb(x1))))) | (79) |
| dc(cc(cd(dd(dd(x1))))) | → | dd(dd(db(bb(bd(x1))))) | (80) |
| dc(cc(cd(dd(dc(x1))))) | → | dd(dd(db(bb(bc(x1))))) | (81) |
| dc(cc(cd(dd(da(x1))))) | → | dd(dd(db(bb(ba(x1))))) | (82) |
| cc(cc(cd(dd(db(x1))))) | → | cd(dd(db(bb(bb(x1))))) | (83) |
| cc(cc(cd(dd(dd(x1))))) | → | cd(dd(db(bb(bd(x1))))) | (84) |
| cc(cc(cd(dd(dc(x1))))) | → | cd(dd(db(bb(bc(x1))))) | (85) |
| cc(cc(cd(dd(da(x1))))) | → | cd(dd(db(bb(ba(x1))))) | (86) |
| ac(cc(cd(dd(db(x1))))) | → | ad(dd(db(bb(bb(x1))))) | (87) |
| ac(cc(cd(dd(dd(x1))))) | → | ad(dd(db(bb(bd(x1))))) | (88) |
| ac(cc(cd(dd(dc(x1))))) | → | ad(dd(db(bb(bc(x1))))) | (89) |
| ac(cc(cd(dd(da(x1))))) | → | ad(dd(db(bb(ba(x1))))) | (90) |
| bc(cc(cd(dd(db(x1))))) | → | bd(dd(db(bb(bd(dd(db(x1))))))) | (91) |
| bc(cc(cd(dd(dd(x1))))) | → | bd(dd(db(bb(bd(dd(dd(x1))))))) | (92) |
| bc(cc(cd(dd(dc(x1))))) | → | bd(dd(db(bb(bd(dd(dc(x1))))))) | (93) |
| bc(cc(cd(dd(da(x1))))) | → | bd(dd(db(bb(bd(dd(da(x1))))))) | (94) |
| dc(cc(cd(dd(db(x1))))) | → | dd(dd(db(bb(bd(dd(db(x1))))))) | (95) |
| dc(cc(cd(dd(dd(x1))))) | → | dd(dd(db(bb(bd(dd(dd(x1))))))) | (96) |
| dc(cc(cd(dd(dc(x1))))) | → | dd(dd(db(bb(bd(dd(dc(x1))))))) | (97) |
| dc(cc(cd(dd(da(x1))))) | → | dd(dd(db(bb(bd(dd(da(x1))))))) | (98) |
| cc(cc(cd(dd(db(x1))))) | → | cd(dd(db(bb(bd(dd(db(x1))))))) | (99) |
| cc(cc(cd(dd(dd(x1))))) | → | cd(dd(db(bb(bd(dd(dd(x1))))))) | (100) |
| cc(cc(cd(dd(dc(x1))))) | → | cd(dd(db(bb(bd(dd(dc(x1))))))) | (101) |
| cc(cc(cd(dd(da(x1))))) | → | cd(dd(db(bb(bd(dd(da(x1))))))) | (102) |
| ac(cc(cd(dd(db(x1))))) | → | ad(dd(db(bb(bd(dd(db(x1))))))) | (103) |
| ac(cc(cd(dd(dd(x1))))) | → | ad(dd(db(bb(bd(dd(dd(x1))))))) | (104) |
| ac(cc(cd(dd(dc(x1))))) | → | ad(dd(db(bb(bd(dd(dc(x1))))))) | (105) |
| ac(cc(cd(dd(da(x1))))) | → | ad(dd(db(bb(bd(dd(da(x1))))))) | (106) |
| bc(cc(ca(aa(ad(dd(db(x1))))))) | → | bb(bb(bb(bb(bb(x1))))) | (107) |
| bc(cc(ca(aa(ad(dd(dd(x1))))))) | → | bb(bb(bb(bb(bd(x1))))) | (108) |
| bc(cc(ca(aa(ad(dd(dc(x1))))))) | → | bb(bb(bb(bb(bc(x1))))) | (109) |
| bc(cc(ca(aa(ad(dd(da(x1))))))) | → | bb(bb(bb(bb(ba(x1))))) | (110) |
| dc(cc(ca(aa(ad(dd(db(x1))))))) | → | db(bb(bb(bb(bb(x1))))) | (111) |
| dc(cc(ca(aa(ad(dd(dd(x1))))))) | → | db(bb(bb(bb(bd(x1))))) | (112) |
| dc(cc(ca(aa(ad(dd(dc(x1))))))) | → | db(bb(bb(bb(bc(x1))))) | (113) |
| dc(cc(ca(aa(ad(dd(da(x1))))))) | → | db(bb(bb(bb(ba(x1))))) | (114) |
| cc(cc(ca(aa(ad(dd(db(x1))))))) | → | cb(bb(bb(bb(bb(x1))))) | (115) |
| cc(cc(ca(aa(ad(dd(dd(x1))))))) | → | cb(bb(bb(bb(bd(x1))))) | (116) |
| cc(cc(ca(aa(ad(dd(dc(x1))))))) | → | cb(bb(bb(bb(bc(x1))))) | (117) |
| cc(cc(ca(aa(ad(dd(da(x1))))))) | → | cb(bb(bb(bb(ba(x1))))) | (118) |
| ac(cc(ca(aa(ad(dd(db(x1))))))) | → | ab(bb(bb(bb(bb(x1))))) | (119) |
| ac(cc(ca(aa(ad(dd(dd(x1))))))) | → | ab(bb(bb(bb(bd(x1))))) | (120) |
| ac(cc(ca(aa(ad(dd(dc(x1))))))) | → | ab(bb(bb(bb(bc(x1))))) | (121) |
| ac(cc(ca(aa(ad(dd(da(x1))))))) | → | ab(bb(bb(bb(ba(x1))))) | (122) |
| [bb(x1)] | = | 1 · x1 + 1 |
| [bd(x1)] | = | 1 · x1 |
| [dd(x1)] | = | 1 · x1 |
| [db(x1)] | = | 1 · x1 + 1 |
| [dc(x1)] | = | 1 · x1 |
| [cc(x1)] | = | 1 · x1 + 1 |
| [cb(x1)] | = | 1 · x1 |
| [cd(x1)] | = | 1 · x1 + 1 |
| [bc(x1)] | = | 1 · x1 |
| [ba(x1)] | = | 1 · x1 |
| [ca(x1)] | = | 1 · x1 + 1 |
| [aa(x1)] | = | 1 · x1 + 1 |
| [ab(x1)] | = | 1 · x1 + 1 |
| [da(x1)] | = | 1 · x1 + 2 |
| [ad(x1)] | = | 1 · x1 + 1 |
| [ac(x1)] | = | 1 · x1 + 1 |
| bb(bd(dd(db(bb(bb(x1)))))) | → | bb(bd(dd(dc(cc(cb(x1)))))) | (35) |
| cc(ca(aa(ab(bb(bb(x1)))))) | → | cc(cb(bb(bb(x1)))) | (39) |
| cc(ca(aa(ab(bb(bd(x1)))))) | → | cc(cb(bb(bd(x1)))) | (40) |
| cc(ca(aa(ab(bb(bc(x1)))))) | → | cc(cb(bb(bc(x1)))) | (41) |
| cc(ca(aa(ab(bb(ba(x1)))))) | → | cc(cb(bb(ba(x1)))) | (42) |
| bd(dd(da(aa(ab(x1))))) | → | bc(cc(cd(dd(db(x1))))) | (43) |
| bd(dd(da(aa(ad(x1))))) | → | bc(cc(cd(dd(dd(x1))))) | (44) |
| bd(dd(da(aa(ac(x1))))) | → | bc(cc(cd(dd(dc(x1))))) | (45) |
| dd(dd(da(aa(ab(x1))))) | → | dc(cc(cd(dd(db(x1))))) | (47) |
| dd(dd(da(aa(ad(x1))))) | → | dc(cc(cd(dd(dd(x1))))) | (48) |
| dd(dd(da(aa(ac(x1))))) | → | dc(cc(cd(dd(dc(x1))))) | (49) |
| cd(dd(da(aa(ab(x1))))) | → | cc(cc(cd(dd(db(x1))))) | (51) |
| cd(dd(da(aa(ad(x1))))) | → | cc(cc(cd(dd(dd(x1))))) | (52) |
| cd(dd(da(aa(ac(x1))))) | → | cc(cc(cd(dd(dc(x1))))) | (53) |
| ad(dd(da(aa(ab(x1))))) | → | ac(cc(cd(dd(db(x1))))) | (55) |
| ad(dd(da(aa(ad(x1))))) | → | ac(cc(cd(dd(dd(x1))))) | (56) |
| ad(dd(da(aa(ac(x1))))) | → | ac(cc(cd(dd(dc(x1))))) | (57) |
| bb(bb(bb(bb(bb(bb(bb(x1))))))) | → | bc(cc(cb(bb(ba(aa(ab(x1))))))) | (59) |
| bb(bb(bb(bb(bb(bb(bd(x1))))))) | → | bc(cc(cb(bb(ba(aa(ad(x1))))))) | (60) |
| bb(bb(bb(bb(bb(bb(bc(x1))))))) | → | bc(cc(cb(bb(ba(aa(ac(x1))))))) | (61) |
| bb(bb(bb(bb(bb(bb(ba(x1))))))) | → | bc(cc(cb(bb(ba(aa(aa(x1))))))) | (62) |
| db(bb(bb(bb(bb(bb(bb(x1))))))) | → | dc(cc(cb(bb(ba(aa(ab(x1))))))) | (63) |
| db(bb(bb(bb(bb(bb(bd(x1))))))) | → | dc(cc(cb(bb(ba(aa(ad(x1))))))) | (64) |
| db(bb(bb(bb(bb(bb(bc(x1))))))) | → | dc(cc(cb(bb(ba(aa(ac(x1))))))) | (65) |
| db(bb(bb(bb(bb(bb(ba(x1))))))) | → | dc(cc(cb(bb(ba(aa(aa(x1))))))) | (66) |
| cb(bb(bb(bb(bb(bb(bb(x1))))))) | → | cc(cc(cb(bb(ba(aa(ab(x1))))))) | (67) |
| ab(bb(bb(bb(bb(bb(bb(x1))))))) | → | ac(cc(cb(bb(ba(aa(ab(x1))))))) | (71) |
| ab(bb(bb(bb(bb(bb(bd(x1))))))) | → | ac(cc(cb(bb(ba(aa(ad(x1))))))) | (72) |
| ab(bb(bb(bb(bb(bb(bc(x1))))))) | → | ac(cc(cb(bb(ba(aa(ac(x1))))))) | (73) |
| ab(bb(bb(bb(bb(bb(ba(x1))))))) | → | ac(cc(cb(bb(ba(aa(aa(x1))))))) | (74) |
| bc(cc(cd(dd(da(x1))))) | → | bd(dd(db(bb(ba(x1))))) | (78) |
| dc(cc(cd(dd(da(x1))))) | → | dd(dd(db(bb(ba(x1))))) | (82) |
| cc(cc(cd(dd(da(x1))))) | → | cd(dd(db(bb(ba(x1))))) | (86) |
| ac(cc(cd(dd(da(x1))))) | → | ad(dd(db(bb(ba(x1))))) | (90) |
| bc(cc(ca(aa(ad(dd(da(x1))))))) | → | bb(bb(bb(bb(ba(x1))))) | (110) |
| dc(cc(ca(aa(ad(dd(da(x1))))))) | → | db(bb(bb(bb(ba(x1))))) | (114) |
| cc(cc(ca(aa(ad(dd(db(x1))))))) | → | cb(bb(bb(bb(bb(x1))))) | (115) |
| cc(cc(ca(aa(ad(dd(dd(x1))))))) | → | cb(bb(bb(bb(bd(x1))))) | (116) |
| cc(cc(ca(aa(ad(dd(dc(x1))))))) | → | cb(bb(bb(bb(bc(x1))))) | (117) |
| cc(cc(ca(aa(ad(dd(da(x1))))))) | → | cb(bb(bb(bb(ba(x1))))) | (118) |
| ac(cc(ca(aa(ad(dd(db(x1))))))) | → | ab(bb(bb(bb(bb(x1))))) | (119) |
| ac(cc(ca(aa(ad(dd(dd(x1))))))) | → | ab(bb(bb(bb(bd(x1))))) | (120) |
| ac(cc(ca(aa(ad(dd(dc(x1))))))) | → | ab(bb(bb(bb(bc(x1))))) | (121) |
| ac(cc(ca(aa(ad(dd(da(x1))))))) | → | ab(bb(bb(bb(ba(x1))))) | (122) |
There are 186 ruless (increase limit for explicit display).
The dependency pairs are split into 1 component.
| bb#(bd(dd(db(bb(bd(x1)))))) | → | dc#(cc(cd(x1))) | (126) |
| dc#(cc(cd(dd(db(x1))))) | → | bb#(bb(x1)) | (184) |
| bb#(bd(dd(db(bb(bd(x1)))))) | → | bb#(bd(dd(dc(cc(cd(x1)))))) | (123) |
| bb#(bd(dd(db(bb(bd(x1)))))) | → | cc#(cd(x1)) | (127) |
| cc#(cc(cd(dd(db(x1))))) | → | bb#(bb(x1)) | (196) |
| bb#(bd(dd(db(bb(bd(x1)))))) | → | cd#(x1) | (128) |
| cd#(dd(da(aa(aa(x1))))) | → | cc#(cc(cd(dd(da(x1))))) | (148) |
| cc#(cc(cd(dd(db(x1))))) | → | bb#(x1) | (197) |
| bb#(bd(dd(db(bb(bc(x1)))))) | → | bb#(bd(dd(dc(cc(cc(x1)))))) | (129) |
| bb#(bd(dd(db(bb(bc(x1)))))) | → | dc#(cc(cc(x1))) | (132) |
| dc#(cc(cd(dd(db(x1))))) | → | bb#(x1) | (185) |
| bb#(bd(dd(db(bb(bc(x1)))))) | → | cc#(cc(x1)) | (133) |
| cc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(x1)) | (200) |
| bb#(bd(dd(db(bb(bc(x1)))))) | → | cc#(x1) | (134) |
| cc#(cc(cd(dd(dd(x1))))) | → | bd#(x1) | (201) |
| bd#(dd(da(aa(aa(x1))))) | → | bc#(cc(cd(dd(da(x1))))) | (140) |
| bc#(cc(cd(dd(db(x1))))) | → | bb#(bb(x1)) | (172) |
| bc#(cc(cd(dd(db(x1))))) | → | bb#(x1) | (173) |
| bb#(bd(dd(db(bb(ba(x1)))))) | → | bb#(bd(dd(dc(cc(ca(x1)))))) | (135) |
| bb#(bd(dd(db(bb(ba(x1)))))) | → | dc#(cc(ca(x1))) | (138) |
| dc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(bb(bb(bb(x1)))) | (297) |
| dc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(bb(bb(x1))) | (298) |
| dc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(bb(x1)) | (299) |
| dc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(x1) | (300) |
| dc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bb#(bb(bb(bd(x1)))) | (301) |
| dc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bb#(bb(bd(x1))) | (302) |
| dc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bb#(bd(x1)) | (303) |
| dc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bd#(x1) | (304) |
| bd#(dd(da(aa(aa(x1))))) | → | cc#(cd(dd(da(x1)))) | (141) |
| cc#(cc(cd(dd(dc(x1))))) | → | bb#(bc(x1)) | (204) |
| cc#(cc(cd(dd(dc(x1))))) | → | bc#(x1) | (205) |
| bc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(x1)) | (176) |
| bc#(cc(cd(dd(dd(x1))))) | → | bd#(x1) | (177) |
| bd#(dd(da(aa(aa(x1))))) | → | cd#(dd(da(x1))) | (142) |
| cd#(dd(da(aa(aa(x1))))) | → | cc#(cd(dd(da(x1)))) | (149) |
| cc#(cc(cd(dd(db(x1))))) | → | bb#(bd(dd(db(x1)))) | (252) |
| cc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(dd(dd(x1)))) | (256) |
| cc#(cc(cd(dd(dc(x1))))) | → | bb#(bd(dd(dc(x1)))) | (260) |
| cd#(dd(da(aa(aa(x1))))) | → | cd#(dd(da(x1))) | (150) |
| bc#(cc(cd(dd(dc(x1))))) | → | bb#(bc(x1)) | (180) |
| bc#(cc(cd(dd(dc(x1))))) | → | bc#(x1) | (181) |
| bc#(cc(cd(dd(db(x1))))) | → | bb#(bd(dd(db(x1)))) | (220) |
| bc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(dd(dd(x1)))) | (224) |
| bc#(cc(cd(dd(dc(x1))))) | → | bb#(bd(dd(dc(x1)))) | (228) |
| bc#(cc(cd(dd(da(x1))))) | → | bb#(bd(dd(da(x1)))) | (232) |
| bc#(cc(cd(dd(da(x1))))) | → | bd#(dd(da(x1))) | (233) |
| bc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(bb(bb(bb(bb(x1))))) | (282) |
| bc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(bb(bb(bb(x1)))) | (283) |
| bc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(bb(bb(x1))) | (284) |
| bc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(bb(x1)) | (285) |
| bc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(x1) | (286) |
| bc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bb#(bb(bb(bb(bd(x1))))) | (287) |
| bc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bb#(bb(bb(bd(x1)))) | (288) |
| bc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bb#(bb(bd(x1))) | (289) |
| bc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bb#(bd(x1)) | (290) |
| bc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bd#(x1) | (291) |
| bc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bb#(bb(bb(bb(bc(x1))))) | (292) |
| bc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bb#(bb(bb(bc(x1)))) | (293) |
| bc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bb#(bb(bc(x1))) | (294) |
| bc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bb#(bc(x1)) | (295) |
| bc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bc#(x1) | (296) |
| dc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bb#(bb(bb(bc(x1)))) | (305) |
| dc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bb#(bb(bc(x1))) | (306) |
| dc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bb#(bc(x1)) | (307) |
| dc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bc#(x1) | (308) |
| cc#(cc(cd(dd(da(x1))))) | → | bb#(bd(dd(da(x1)))) | (264) |
| cc#(cc(cd(dd(da(x1))))) | → | bd#(dd(da(x1))) | (265) |
| dc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(x1)) | (188) |
| dc#(cc(cd(dd(dd(x1))))) | → | bd#(x1) | (189) |
| dc#(cc(cd(dd(dc(x1))))) | → | bb#(bc(x1)) | (192) |
| dc#(cc(cd(dd(dc(x1))))) | → | bc#(x1) | (193) |
| dc#(cc(cd(dd(db(x1))))) | → | bb#(bd(dd(db(x1)))) | (236) |
| dc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(dd(dd(x1)))) | (240) |
| dc#(cc(cd(dd(dc(x1))))) | → | bb#(bd(dd(dc(x1)))) | (244) |
| dc#(cc(cd(dd(da(x1))))) | → | bb#(bd(dd(da(x1)))) | (248) |
| dc#(cc(cd(dd(da(x1))))) | → | bd#(dd(da(x1))) | (249) |
| [bd(x1)] | = | 1 · x1 |
| [dd(x1)] | = | 1 · x1 |
| [da(x1)] | = | 1 · x1 |
| [aa(x1)] | = | 1 · x1 |
| [bc(x1)] | = | 1 · x1 |
| [cc(x1)] | = | 1 · x1 |
| [cd(x1)] | = | 1 · x1 |
| [db(x1)] | = | 1 · x1 |
| [bb(x1)] | = | 1 · x1 |
| [dc(x1)] | = | 1 · x1 |
| [ca(x1)] | = | 1 · x1 |
| [ad(x1)] | = | 1 · x1 |
| [ba(x1)] | = | 1 · x1 |
| [dc#(x1)] | = | 1 · x1 |
| [bb#(x1)] | = | 1 · x1 |
| [cc#(x1)] | = | 1 · x1 |
| [cd#(x1)] | = | 1 · x1 |
| [bd#(x1)] | = | 1 · x1 |
| [bc#(x1)] | = | 1 · x1 |
| bd(dd(da(aa(aa(x1))))) | → | bc(cc(cd(dd(da(x1))))) | (46) |
| cd(dd(da(aa(aa(x1))))) | → | cc(cc(cd(dd(da(x1))))) | (54) |
| cc(cc(cd(dd(db(x1))))) | → | cd(dd(db(bb(bb(x1))))) | (83) |
| cc(cc(cd(dd(dd(x1))))) | → | cd(dd(db(bb(bd(x1))))) | (84) |
| cc(cc(cd(dd(dc(x1))))) | → | cd(dd(db(bb(bc(x1))))) | (85) |
| cc(cc(cd(dd(db(x1))))) | → | cd(dd(db(bb(bd(dd(db(x1))))))) | (99) |
| cc(cc(cd(dd(dd(x1))))) | → | cd(dd(db(bb(bd(dd(dd(x1))))))) | (100) |
| cc(cc(cd(dd(dc(x1))))) | → | cd(dd(db(bb(bd(dd(dc(x1))))))) | (101) |
| cc(cc(cd(dd(da(x1))))) | → | cd(dd(db(bb(bd(dd(da(x1))))))) | (102) |
| bc(cc(cd(dd(db(x1))))) | → | bd(dd(db(bb(bb(x1))))) | (75) |
| bc(cc(cd(dd(dd(x1))))) | → | bd(dd(db(bb(bd(x1))))) | (76) |
| bc(cc(cd(dd(dc(x1))))) | → | bd(dd(db(bb(bc(x1))))) | (77) |
| bc(cc(cd(dd(db(x1))))) | → | bd(dd(db(bb(bd(dd(db(x1))))))) | (91) |
| bc(cc(cd(dd(dd(x1))))) | → | bd(dd(db(bb(bd(dd(dd(x1))))))) | (92) |
| bc(cc(cd(dd(dc(x1))))) | → | bd(dd(db(bb(bd(dd(dc(x1))))))) | (93) |
| bc(cc(cd(dd(da(x1))))) | → | bd(dd(db(bb(bd(dd(da(x1))))))) | (94) |
| bc(cc(ca(aa(ad(dd(db(x1))))))) | → | bb(bb(bb(bb(bb(x1))))) | (107) |
| bc(cc(ca(aa(ad(dd(dd(x1))))))) | → | bb(bb(bb(bb(bd(x1))))) | (108) |
| bc(cc(ca(aa(ad(dd(dc(x1))))))) | → | bb(bb(bb(bb(bc(x1))))) | (109) |
| bb(bd(dd(db(bb(bc(x1)))))) | → | bb(bd(dd(dc(cc(cc(x1)))))) | (37) |
| bb(bd(dd(db(bb(bd(x1)))))) | → | bb(bd(dd(dc(cc(cd(x1)))))) | (36) |
| bb(bd(dd(db(bb(ba(x1)))))) | → | bb(bd(dd(dc(cc(ca(x1)))))) | (38) |
| dc(cc(cd(dd(db(x1))))) | → | dd(dd(db(bb(bb(x1))))) | (79) |
| dc(cc(cd(dd(dd(x1))))) | → | dd(dd(db(bb(bd(x1))))) | (80) |
| dc(cc(cd(dd(dc(x1))))) | → | dd(dd(db(bb(bc(x1))))) | (81) |
| dc(cc(cd(dd(db(x1))))) | → | dd(dd(db(bb(bd(dd(db(x1))))))) | (95) |
| dc(cc(cd(dd(dd(x1))))) | → | dd(dd(db(bb(bd(dd(dd(x1))))))) | (96) |
| dc(cc(cd(dd(dc(x1))))) | → | dd(dd(db(bb(bd(dd(dc(x1))))))) | (97) |
| dc(cc(cd(dd(da(x1))))) | → | dd(dd(db(bb(bd(dd(da(x1))))))) | (98) |
| dc(cc(ca(aa(ad(dd(db(x1))))))) | → | db(bb(bb(bb(bb(x1))))) | (111) |
| dc(cc(ca(aa(ad(dd(dd(x1))))))) | → | db(bb(bb(bb(bd(x1))))) | (112) |
| dc(cc(ca(aa(ad(dd(dc(x1))))))) | → | db(bb(bb(bb(bc(x1))))) | (113) |
| dd(dd(da(aa(aa(x1))))) | → | dc(cc(cd(dd(da(x1))))) | (50) |
| [bb#(x1)] | = | 1 · x1 |
| [bd(x1)] | = | 1 · x1 |
| [dd(x1)] | = | 1 · x1 |
| [db(x1)] | = | 1 · x1 |
| [bb(x1)] | = | 1 · x1 |
| [dc#(x1)] | = | 1 · x1 |
| [cc(x1)] | = | 1 · x1 |
| [cd(x1)] | = | 1 · x1 |
| [dc(x1)] | = | 1 · x1 |
| [cc#(x1)] | = | 1 · x1 |
| [cd#(x1)] | = | 0 |
| [da(x1)] | = | 0 |
| [aa(x1)] | = | 1 · x1 |
| [bc(x1)] | = | 1 · x1 |
| [bd#(x1)] | = | 0 |
| [bc#(x1)] | = | 1 · x1 |
| [ba(x1)] | = | 1 + 1 · x1 |
| [ca(x1)] | = | 1 + 1 · x1 |
| [ad(x1)] | = | 1 · x1 |
| dc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(bb(bb(bb(x1)))) | (297) |
| dc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(bb(bb(x1))) | (298) |
| dc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(bb(x1)) | (299) |
| dc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(x1) | (300) |
| dc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bb#(bb(bb(bd(x1)))) | (301) |
| dc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bb#(bb(bd(x1))) | (302) |
| dc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bb#(bd(x1)) | (303) |
| dc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bd#(x1) | (304) |
| bc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(bb(bb(bb(bb(x1))))) | (282) |
| bc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(bb(bb(bb(x1)))) | (283) |
| bc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(bb(bb(x1))) | (284) |
| bc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(bb(x1)) | (285) |
| bc#(cc(ca(aa(ad(dd(db(x1))))))) | → | bb#(x1) | (286) |
| bc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bb#(bb(bb(bb(bd(x1))))) | (287) |
| bc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bb#(bb(bb(bd(x1)))) | (288) |
| bc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bb#(bb(bd(x1))) | (289) |
| bc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bb#(bd(x1)) | (290) |
| bc#(cc(ca(aa(ad(dd(dd(x1))))))) | → | bd#(x1) | (291) |
| bc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bb#(bb(bb(bb(bc(x1))))) | (292) |
| bc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bb#(bb(bb(bc(x1)))) | (293) |
| bc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bb#(bb(bc(x1))) | (294) |
| bc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bb#(bc(x1)) | (295) |
| bc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bc#(x1) | (296) |
| dc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bb#(bb(bb(bc(x1)))) | (305) |
| dc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bb#(bb(bc(x1))) | (306) |
| dc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bb#(bc(x1)) | (307) |
| dc#(cc(ca(aa(ad(dd(dc(x1))))))) | → | bc#(x1) | (308) |
The dependency pairs are split into 1 component.
| dc#(cc(cd(dd(db(x1))))) | → | bb#(bb(x1)) | (184) |
| bb#(bd(dd(db(bb(bd(x1)))))) | → | bb#(bd(dd(dc(cc(cd(x1)))))) | (123) |
| bb#(bd(dd(db(bb(bd(x1)))))) | → | dc#(cc(cd(x1))) | (126) |
| dc#(cc(cd(dd(db(x1))))) | → | bb#(x1) | (185) |
| bb#(bd(dd(db(bb(bd(x1)))))) | → | cc#(cd(x1)) | (127) |
| cc#(cc(cd(dd(db(x1))))) | → | bb#(bb(x1)) | (196) |
| bb#(bd(dd(db(bb(bd(x1)))))) | → | cd#(x1) | (128) |
| cd#(dd(da(aa(aa(x1))))) | → | cc#(cc(cd(dd(da(x1))))) | (148) |
| cc#(cc(cd(dd(db(x1))))) | → | bb#(x1) | (197) |
| bb#(bd(dd(db(bb(bc(x1)))))) | → | bb#(bd(dd(dc(cc(cc(x1)))))) | (129) |
| bb#(bd(dd(db(bb(bc(x1)))))) | → | dc#(cc(cc(x1))) | (132) |
| dc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(x1)) | (188) |
| bb#(bd(dd(db(bb(bc(x1)))))) | → | cc#(cc(x1)) | (133) |
| cc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(x1)) | (200) |
| bb#(bd(dd(db(bb(bc(x1)))))) | → | cc#(x1) | (134) |
| cc#(cc(cd(dd(dd(x1))))) | → | bd#(x1) | (201) |
| bd#(dd(da(aa(aa(x1))))) | → | bc#(cc(cd(dd(da(x1))))) | (140) |
| bc#(cc(cd(dd(db(x1))))) | → | bb#(bb(x1)) | (172) |
| bc#(cc(cd(dd(db(x1))))) | → | bb#(x1) | (173) |
| bb#(bd(dd(db(bb(ba(x1)))))) | → | bb#(bd(dd(dc(cc(ca(x1)))))) | (135) |
| bc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(x1)) | (176) |
| bc#(cc(cd(dd(dd(x1))))) | → | bd#(x1) | (177) |
| bd#(dd(da(aa(aa(x1))))) | → | cc#(cd(dd(da(x1)))) | (141) |
| cc#(cc(cd(dd(dc(x1))))) | → | bb#(bc(x1)) | (204) |
| cc#(cc(cd(dd(dc(x1))))) | → | bc#(x1) | (205) |
| bc#(cc(cd(dd(dc(x1))))) | → | bb#(bc(x1)) | (180) |
| bc#(cc(cd(dd(dc(x1))))) | → | bc#(x1) | (181) |
| bc#(cc(cd(dd(db(x1))))) | → | bb#(bd(dd(db(x1)))) | (220) |
| bc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(dd(dd(x1)))) | (224) |
| bc#(cc(cd(dd(dc(x1))))) | → | bb#(bd(dd(dc(x1)))) | (228) |
| bc#(cc(cd(dd(da(x1))))) | → | bb#(bd(dd(da(x1)))) | (232) |
| bc#(cc(cd(dd(da(x1))))) | → | bd#(dd(da(x1))) | (233) |
| bd#(dd(da(aa(aa(x1))))) | → | cd#(dd(da(x1))) | (142) |
| cd#(dd(da(aa(aa(x1))))) | → | cc#(cd(dd(da(x1)))) | (149) |
| cc#(cc(cd(dd(db(x1))))) | → | bb#(bd(dd(db(x1)))) | (252) |
| cc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(dd(dd(x1)))) | (256) |
| cc#(cc(cd(dd(dc(x1))))) | → | bb#(bd(dd(dc(x1)))) | (260) |
| cd#(dd(da(aa(aa(x1))))) | → | cd#(dd(da(x1))) | (150) |
| cc#(cc(cd(dd(da(x1))))) | → | bb#(bd(dd(da(x1)))) | (264) |
| cc#(cc(cd(dd(da(x1))))) | → | bd#(dd(da(x1))) | (265) |
| dc#(cc(cd(dd(dd(x1))))) | → | bd#(x1) | (189) |
| dc#(cc(cd(dd(dc(x1))))) | → | bb#(bc(x1)) | (192) |
| dc#(cc(cd(dd(dc(x1))))) | → | bc#(x1) | (193) |
| dc#(cc(cd(dd(db(x1))))) | → | bb#(bd(dd(db(x1)))) | (236) |
| dc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(dd(dd(x1)))) | (240) |
| dc#(cc(cd(dd(dc(x1))))) | → | bb#(bd(dd(dc(x1)))) | (244) |
| dc#(cc(cd(dd(da(x1))))) | → | bb#(bd(dd(da(x1)))) | (248) |
| dc#(cc(cd(dd(da(x1))))) | → | bd#(dd(da(x1))) | (249) |
| [dc#(x1)] | = | 1 · x1 |
| [cc(x1)] | = | 1 · x1 |
| [cd(x1)] | = | 1 · x1 |
| [dd(x1)] | = | 1 · x1 |
| [db(x1)] | = | 1 · x1 |
| [bb#(x1)] | = | 1 · x1 |
| [bb(x1)] | = | 1 · x1 |
| [bd(x1)] | = | 1 · x1 |
| [dc(x1)] | = | 1 · x1 |
| [cc#(x1)] | = | 1 · x1 |
| [cd#(x1)] | = | 0 |
| [da(x1)] | = | 0 |
| [aa(x1)] | = | 1 · x1 |
| [bc(x1)] | = | 1 · x1 |
| [bd#(x1)] | = | 1 · x1 |
| [bc#(x1)] | = | 1 · x1 |
| [ba(x1)] | = | 1 + 1 · x1 |
| [ca(x1)] | = | 1 · x1 |
| [ad(x1)] | = | 1 · x1 |
| bb#(bd(dd(db(bb(ba(x1)))))) | → | bb#(bd(dd(dc(cc(ca(x1)))))) | (135) |
| [dc#(x1)] | = | 1 · x1 |
| [cc(x1)] | = | 1 · x1 |
| [cd(x1)] | = | 1 · x1 |
| [dd(x1)] | = | 1 · x1 |
| [db(x1)] | = | 1 · x1 |
| [bb#(x1)] | = | 1 · x1 |
| [bb(x1)] | = | 1 · x1 |
| [bd(x1)] | = | 1 · x1 |
| [dc(x1)] | = | 1 · x1 |
| [cc#(x1)] | = | 1 · x1 |
| [cd#(x1)] | = | 1 · x1 |
| [da(x1)] | = | 1 · x1 |
| [aa(x1)] | = | 1 + 1 · x1 |
| [bc(x1)] | = | 1 · x1 |
| [bd#(x1)] | = | 1 · x1 |
| [bc#(x1)] | = | 1 · x1 |
| [ba(x1)] | = | 1 · x1 |
| [ca(x1)] | = | 1 · x1 |
| [ad(x1)] | = | 1 · x1 |
| cd#(dd(da(aa(aa(x1))))) | → | cc#(cc(cd(dd(da(x1))))) | (148) |
| bd#(dd(da(aa(aa(x1))))) | → | bc#(cc(cd(dd(da(x1))))) | (140) |
| bd#(dd(da(aa(aa(x1))))) | → | cc#(cd(dd(da(x1)))) | (141) |
| bd#(dd(da(aa(aa(x1))))) | → | cd#(dd(da(x1))) | (142) |
| cd#(dd(da(aa(aa(x1))))) | → | cc#(cd(dd(da(x1)))) | (149) |
| cd#(dd(da(aa(aa(x1))))) | → | cd#(dd(da(x1))) | (150) |
The dependency pairs are split into 1 component.
| bb#(bd(dd(db(bb(bd(x1)))))) | → | bb#(bd(dd(dc(cc(cd(x1)))))) | (123) |
| bb#(bd(dd(db(bb(bd(x1)))))) | → | dc#(cc(cd(x1))) | (126) |
| dc#(cc(cd(dd(db(x1))))) | → | bb#(bb(x1)) | (184) |
| bb#(bd(dd(db(bb(bd(x1)))))) | → | cc#(cd(x1)) | (127) |
| cc#(cc(cd(dd(db(x1))))) | → | bb#(bb(x1)) | (196) |
| bb#(bd(dd(db(bb(bc(x1)))))) | → | bb#(bd(dd(dc(cc(cc(x1)))))) | (129) |
| bb#(bd(dd(db(bb(bc(x1)))))) | → | dc#(cc(cc(x1))) | (132) |
| dc#(cc(cd(dd(db(x1))))) | → | bb#(x1) | (185) |
| bb#(bd(dd(db(bb(bc(x1)))))) | → | cc#(cc(x1)) | (133) |
| cc#(cc(cd(dd(db(x1))))) | → | bb#(x1) | (197) |
| bb#(bd(dd(db(bb(bc(x1)))))) | → | cc#(x1) | (134) |
| cc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(x1)) | (200) |
| cc#(cc(cd(dd(dc(x1))))) | → | bb#(bc(x1)) | (204) |
| cc#(cc(cd(dd(dc(x1))))) | → | bc#(x1) | (205) |
| bc#(cc(cd(dd(db(x1))))) | → | bb#(bb(x1)) | (172) |
| bc#(cc(cd(dd(db(x1))))) | → | bb#(x1) | (173) |
| bc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(x1)) | (176) |
| bc#(cc(cd(dd(dc(x1))))) | → | bb#(bc(x1)) | (180) |
| bc#(cc(cd(dd(dc(x1))))) | → | bc#(x1) | (181) |
| bc#(cc(cd(dd(db(x1))))) | → | bb#(bd(dd(db(x1)))) | (220) |
| bc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(dd(dd(x1)))) | (224) |
| bc#(cc(cd(dd(dc(x1))))) | → | bb#(bd(dd(dc(x1)))) | (228) |
| bc#(cc(cd(dd(da(x1))))) | → | bb#(bd(dd(da(x1)))) | (232) |
| cc#(cc(cd(dd(db(x1))))) | → | bb#(bd(dd(db(x1)))) | (252) |
| cc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(dd(dd(x1)))) | (256) |
| cc#(cc(cd(dd(dc(x1))))) | → | bb#(bd(dd(dc(x1)))) | (260) |
| cc#(cc(cd(dd(da(x1))))) | → | bb#(bd(dd(da(x1)))) | (264) |
| dc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(x1)) | (188) |
| dc#(cc(cd(dd(dc(x1))))) | → | bb#(bc(x1)) | (192) |
| dc#(cc(cd(dd(dc(x1))))) | → | bc#(x1) | (193) |
| dc#(cc(cd(dd(db(x1))))) | → | bb#(bd(dd(db(x1)))) | (236) |
| dc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(dd(dd(x1)))) | (240) |
| dc#(cc(cd(dd(dc(x1))))) | → | bb#(bd(dd(dc(x1)))) | (244) |
| dc#(cc(cd(dd(da(x1))))) | → | bb#(bd(dd(da(x1)))) | (248) |
| [bb#(x1)] | = | 1 · x1 |
| [bd(x1)] | = | 1 · x1 |
| [dd(x1)] | = | 1 · x1 |
| [db(x1)] | = | 1 + 1 · x1 |
| [bb(x1)] | = | 1 + 1 · x1 |
| [dc(x1)] | = | 1 · x1 |
| [cc(x1)] | = | 1 + 1 · x1 |
| [cd(x1)] | = | 1 + 1 · x1 |
| [dc#(x1)] | = | 1 · x1 |
| [cc#(x1)] | = | 1 · x1 |
| [bc(x1)] | = | 1 · x1 |
| [bc#(x1)] | = | 1 · x1 |
| [da(x1)] | = | 1 · x1 |
| [aa(x1)] | = | 1 + 1 · x1 |
| [ca(x1)] | = | 1 + 1 · x1 |
| [ad(x1)] | = | 1 + 1 · x1 |
| [ba(x1)] | = | 1 · x1 |
| dc#(cc(cd(dd(db(x1))))) | → | bb#(bb(x1)) | (184) |
| bb#(bd(dd(db(bb(bd(x1)))))) | → | cc#(cd(x1)) | (127) |
| cc#(cc(cd(dd(db(x1))))) | → | bb#(bb(x1)) | (196) |
| dc#(cc(cd(dd(db(x1))))) | → | bb#(x1) | (185) |
| bb#(bd(dd(db(bb(bc(x1)))))) | → | cc#(cc(x1)) | (133) |
| cc#(cc(cd(dd(db(x1))))) | → | bb#(x1) | (197) |
| bb#(bd(dd(db(bb(bc(x1)))))) | → | cc#(x1) | (134) |
| cc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(x1)) | (200) |
| cc#(cc(cd(dd(dc(x1))))) | → | bb#(bc(x1)) | (204) |
| cc#(cc(cd(dd(dc(x1))))) | → | bc#(x1) | (205) |
| bc#(cc(cd(dd(db(x1))))) | → | bb#(bb(x1)) | (172) |
| bc#(cc(cd(dd(db(x1))))) | → | bb#(x1) | (173) |
| bc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(x1)) | (176) |
| bc#(cc(cd(dd(dc(x1))))) | → | bb#(bc(x1)) | (180) |
| bc#(cc(cd(dd(dc(x1))))) | → | bc#(x1) | (181) |
| bc#(cc(cd(dd(db(x1))))) | → | bb#(bd(dd(db(x1)))) | (220) |
| bc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(dd(dd(x1)))) | (224) |
| bc#(cc(cd(dd(dc(x1))))) | → | bb#(bd(dd(dc(x1)))) | (228) |
| bc#(cc(cd(dd(da(x1))))) | → | bb#(bd(dd(da(x1)))) | (232) |
| cc#(cc(cd(dd(db(x1))))) | → | bb#(bd(dd(db(x1)))) | (252) |
| cc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(dd(dd(x1)))) | (256) |
| cc#(cc(cd(dd(dc(x1))))) | → | bb#(bd(dd(dc(x1)))) | (260) |
| cc#(cc(cd(dd(da(x1))))) | → | bb#(bd(dd(da(x1)))) | (264) |
| dc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(x1)) | (188) |
| dc#(cc(cd(dd(dc(x1))))) | → | bb#(bc(x1)) | (192) |
| dc#(cc(cd(dd(dc(x1))))) | → | bc#(x1) | (193) |
| dc#(cc(cd(dd(db(x1))))) | → | bb#(bd(dd(db(x1)))) | (236) |
| dc#(cc(cd(dd(dd(x1))))) | → | bb#(bd(dd(dd(x1)))) | (240) |
| dc#(cc(cd(dd(dc(x1))))) | → | bb#(bd(dd(dc(x1)))) | (244) |
| dc#(cc(cd(dd(da(x1))))) | → | bb#(bd(dd(da(x1)))) | (248) |
The dependency pairs are split into 1 component.
| bb#(bd(dd(db(bb(bc(x1)))))) | → | bb#(bd(dd(dc(cc(cc(x1)))))) | (129) |
| bb#(bd(dd(db(bb(bd(x1)))))) | → | bb#(bd(dd(dc(cc(cd(x1)))))) | (123) |
| [bb#(x1)] | = |
|
||||||||||||||||||
| [bd(x1)] | = |
|
||||||||||||||||||
| [dd(x1)] | = |
|
||||||||||||||||||
| [db(x1)] | = |
|
||||||||||||||||||
| [bb(x1)] | = |
|
||||||||||||||||||
| [bc(x1)] | = |
|
||||||||||||||||||
| [dc(x1)] | = |
|
||||||||||||||||||
| [cc(x1)] | = |
|
||||||||||||||||||
| [cd(x1)] | = |
|
||||||||||||||||||
| [da(x1)] | = |
|
||||||||||||||||||
| [ca(x1)] | = |
|
||||||||||||||||||
| [aa(x1)] | = |
|
||||||||||||||||||
| [ad(x1)] | = |
|
||||||||||||||||||
| [ba(x1)] | = |
|
| dc(cc(cd(dd(db(x1))))) | → | dd(dd(db(bb(bb(x1))))) | (79) |
| dc(cc(cd(dd(dd(x1))))) | → | dd(dd(db(bb(bd(x1))))) | (80) |
| dc(cc(cd(dd(dc(x1))))) | → | dd(dd(db(bb(bc(x1))))) | (81) |
| dc(cc(cd(dd(db(x1))))) | → | dd(dd(db(bb(bd(dd(db(x1))))))) | (95) |
| dc(cc(cd(dd(dd(x1))))) | → | dd(dd(db(bb(bd(dd(dd(x1))))))) | (96) |
| dc(cc(cd(dd(dc(x1))))) | → | dd(dd(db(bb(bd(dd(dc(x1))))))) | (97) |
| dc(cc(cd(dd(da(x1))))) | → | dd(dd(db(bb(bd(dd(da(x1))))))) | (98) |
| dc(cc(ca(aa(ad(dd(db(x1))))))) | → | db(bb(bb(bb(bb(x1))))) | (111) |
| dc(cc(ca(aa(ad(dd(dd(x1))))))) | → | db(bb(bb(bb(bd(x1))))) | (112) |
| dc(cc(ca(aa(ad(dd(dc(x1))))))) | → | db(bb(bb(bb(bc(x1))))) | (113) |
| dd(dd(da(aa(aa(x1))))) | → | dc(cc(cd(dd(da(x1))))) | (50) |
| bd(dd(da(aa(aa(x1))))) | → | bc(cc(cd(dd(da(x1))))) | (46) |
| bb(bd(dd(db(bb(bd(x1)))))) | → | bb(bd(dd(dc(cc(cd(x1)))))) | (36) |
| bb(bd(dd(db(bb(bc(x1)))))) | → | bb(bd(dd(dc(cc(cc(x1)))))) | (37) |
| bb(bd(dd(db(bb(ba(x1)))))) | → | bb(bd(dd(dc(cc(ca(x1)))))) | (38) |
| bc(cc(cd(dd(db(x1))))) | → | bd(dd(db(bb(bb(x1))))) | (75) |
| bc(cc(cd(dd(dd(x1))))) | → | bd(dd(db(bb(bd(x1))))) | (76) |
| bc(cc(cd(dd(dc(x1))))) | → | bd(dd(db(bb(bc(x1))))) | (77) |
| bc(cc(cd(dd(db(x1))))) | → | bd(dd(db(bb(bd(dd(db(x1))))))) | (91) |
| bc(cc(cd(dd(dd(x1))))) | → | bd(dd(db(bb(bd(dd(dd(x1))))))) | (92) |
| bc(cc(cd(dd(dc(x1))))) | → | bd(dd(db(bb(bd(dd(dc(x1))))))) | (93) |
| bc(cc(cd(dd(da(x1))))) | → | bd(dd(db(bb(bd(dd(da(x1))))))) | (94) |
| bc(cc(ca(aa(ad(dd(db(x1))))))) | → | bb(bb(bb(bb(bb(x1))))) | (107) |
| bc(cc(ca(aa(ad(dd(dd(x1))))))) | → | bb(bb(bb(bb(bd(x1))))) | (108) |
| bc(cc(ca(aa(ad(dd(dc(x1))))))) | → | bb(bb(bb(bb(bc(x1))))) | (109) |
| bb#(bd(dd(db(bb(bc(x1)))))) | → | bb#(bd(dd(dc(cc(cc(x1)))))) | (129) |
| bb#(bd(dd(db(bb(bd(x1)))))) | → | bb#(bd(dd(dc(cc(cd(x1)))))) | (123) |
There are no pairs anymore.