The rewrite relation of the following TRS is considered.
a(a(a(a(x1)))) | → | a(a(b(b(b(b(b(b(x1)))))))) | (1) |
b(b(a(a(x1)))) | → | b(b(b(b(c(c(x1)))))) | (2) |
a(a(b(b(b(b(c(c(x1)))))))) | → | a(a(a(a(a(a(b(b(x1)))))))) | (3) |
Root-labeling is applied.
We obtain the labeled TRSaa(aa(aa(aa(x1)))) | → | aa(ab(bb(bb(bb(bb(bb(ba(x1)))))))) | (4) |
aa(aa(aa(ab(x1)))) | → | aa(ab(bb(bb(bb(bb(bb(bb(x1)))))))) | (5) |
aa(aa(aa(ac(x1)))) | → | aa(ab(bb(bb(bb(bb(bb(bc(x1)))))))) | (6) |
bb(ba(aa(aa(x1)))) | → | bb(bb(bb(bc(cc(ca(x1)))))) | (7) |
bb(ba(aa(ab(x1)))) | → | bb(bb(bb(bc(cc(cb(x1)))))) | (8) |
bb(ba(aa(ac(x1)))) | → | bb(bb(bb(bc(cc(cc(x1)))))) | (9) |
aa(ab(bb(bb(bb(bc(cc(ca(x1)))))))) | → | aa(aa(aa(aa(aa(ab(bb(ba(x1)))))))) | (10) |
aa(ab(bb(bb(bb(bc(cc(cb(x1)))))))) | → | aa(aa(aa(aa(aa(ab(bb(bb(x1)))))))) | (11) |
aa(ab(bb(bb(bb(bc(cc(cc(x1)))))))) | → | aa(aa(aa(aa(aa(ab(bb(bc(x1)))))))) | (12) |
[aa(x1)] | = | 1 · x1 |
[ab(x1)] | = | 1 · x1 |
[bb(x1)] | = | 1 · x1 |
[ba(x1)] | = | 1 · x1 |
[ac(x1)] | = | 1 · x1 + 1 |
[bc(x1)] | = | 1 · x1 |
[cc(x1)] | = | 1 · x1 |
[ca(x1)] | = | 1 · x1 |
[cb(x1)] | = | 1 · x1 |
aa(aa(aa(ac(x1)))) | → | aa(ab(bb(bb(bb(bb(bb(bc(x1)))))))) | (6) |
bb(ba(aa(ac(x1)))) | → | bb(bb(bb(bc(cc(cc(x1)))))) | (9) |
aa#(aa(aa(aa(x1)))) | → | aa#(ab(bb(bb(bb(bb(bb(ba(x1)))))))) | (13) |
aa#(aa(aa(aa(x1)))) | → | bb#(bb(bb(bb(bb(ba(x1)))))) | (14) |
aa#(aa(aa(aa(x1)))) | → | bb#(bb(bb(bb(ba(x1))))) | (15) |
aa#(aa(aa(aa(x1)))) | → | bb#(bb(bb(ba(x1)))) | (16) |
aa#(aa(aa(aa(x1)))) | → | bb#(bb(ba(x1))) | (17) |
aa#(aa(aa(aa(x1)))) | → | bb#(ba(x1)) | (18) |
aa#(aa(aa(ab(x1)))) | → | aa#(ab(bb(bb(bb(bb(bb(bb(x1)))))))) | (19) |
aa#(aa(aa(ab(x1)))) | → | bb#(bb(bb(bb(bb(bb(x1)))))) | (20) |
aa#(aa(aa(ab(x1)))) | → | bb#(bb(bb(bb(bb(x1))))) | (21) |
aa#(aa(aa(ab(x1)))) | → | bb#(bb(bb(bb(x1)))) | (22) |
aa#(aa(aa(ab(x1)))) | → | bb#(bb(bb(x1))) | (23) |
aa#(aa(aa(ab(x1)))) | → | bb#(bb(x1)) | (24) |
aa#(aa(aa(ab(x1)))) | → | bb#(x1) | (25) |
bb#(ba(aa(aa(x1)))) | → | bb#(bb(bb(bc(cc(ca(x1)))))) | (26) |
bb#(ba(aa(aa(x1)))) | → | bb#(bb(bc(cc(ca(x1))))) | (27) |
bb#(ba(aa(aa(x1)))) | → | bb#(bc(cc(ca(x1)))) | (28) |
bb#(ba(aa(ab(x1)))) | → | bb#(bb(bb(bc(cc(cb(x1)))))) | (29) |
bb#(ba(aa(ab(x1)))) | → | bb#(bb(bc(cc(cb(x1))))) | (30) |
bb#(ba(aa(ab(x1)))) | → | bb#(bc(cc(cb(x1)))) | (31) |
aa#(ab(bb(bb(bb(bc(cc(ca(x1)))))))) | → | aa#(aa(aa(aa(aa(ab(bb(ba(x1)))))))) | (32) |
aa#(ab(bb(bb(bb(bc(cc(ca(x1)))))))) | → | aa#(aa(aa(aa(ab(bb(ba(x1))))))) | (33) |
aa#(ab(bb(bb(bb(bc(cc(ca(x1)))))))) | → | aa#(aa(aa(ab(bb(ba(x1)))))) | (34) |
aa#(ab(bb(bb(bb(bc(cc(ca(x1)))))))) | → | aa#(aa(ab(bb(ba(x1))))) | (35) |
aa#(ab(bb(bb(bb(bc(cc(ca(x1)))))))) | → | aa#(ab(bb(ba(x1)))) | (36) |
aa#(ab(bb(bb(bb(bc(cc(ca(x1)))))))) | → | bb#(ba(x1)) | (37) |
aa#(ab(bb(bb(bb(bc(cc(cb(x1)))))))) | → | aa#(aa(aa(aa(aa(ab(bb(bb(x1)))))))) | (38) |
aa#(ab(bb(bb(bb(bc(cc(cb(x1)))))))) | → | aa#(aa(aa(aa(ab(bb(bb(x1))))))) | (39) |
aa#(ab(bb(bb(bb(bc(cc(cb(x1)))))))) | → | aa#(aa(aa(ab(bb(bb(x1)))))) | (40) |
aa#(ab(bb(bb(bb(bc(cc(cb(x1)))))))) | → | aa#(aa(ab(bb(bb(x1))))) | (41) |
aa#(ab(bb(bb(bb(bc(cc(cb(x1)))))))) | → | aa#(ab(bb(bb(x1)))) | (42) |
aa#(ab(bb(bb(bb(bc(cc(cb(x1)))))))) | → | bb#(bb(x1)) | (43) |
aa#(ab(bb(bb(bb(bc(cc(cb(x1)))))))) | → | bb#(x1) | (44) |
aa#(ab(bb(bb(bb(bc(cc(cc(x1)))))))) | → | aa#(aa(aa(aa(aa(ab(bb(bc(x1)))))))) | (45) |
aa#(ab(bb(bb(bb(bc(cc(cc(x1)))))))) | → | aa#(aa(aa(aa(ab(bb(bc(x1))))))) | (46) |
aa#(ab(bb(bb(bb(bc(cc(cc(x1)))))))) | → | aa#(aa(aa(ab(bb(bc(x1)))))) | (47) |
aa#(ab(bb(bb(bb(bc(cc(cc(x1)))))))) | → | aa#(aa(ab(bb(bc(x1))))) | (48) |
aa#(ab(bb(bb(bb(bc(cc(cc(x1)))))))) | → | aa#(ab(bb(bc(x1)))) | (49) |
aa#(ab(bb(bb(bb(bc(cc(cc(x1)))))))) | → | bb#(bc(x1)) | (50) |
The dependency pairs are split into 1 component.
aa#(ab(bb(bb(bb(bc(cc(ca(x1)))))))) | → | aa#(aa(aa(aa(aa(ab(bb(ba(x1)))))))) | (32) |
aa#(aa(aa(aa(x1)))) | → | aa#(ab(bb(bb(bb(bb(bb(ba(x1)))))))) | (13) |
aa#(ab(bb(bb(bb(bc(cc(ca(x1)))))))) | → | aa#(aa(aa(aa(ab(bb(ba(x1))))))) | (33) |
aa#(aa(aa(ab(x1)))) | → | aa#(ab(bb(bb(bb(bb(bb(bb(x1)))))))) | (19) |
aa#(ab(bb(bb(bb(bc(cc(ca(x1)))))))) | → | aa#(aa(aa(ab(bb(ba(x1)))))) | (34) |
aa#(ab(bb(bb(bb(bc(cc(ca(x1)))))))) | → | aa#(aa(ab(bb(ba(x1))))) | (35) |
aa#(ab(bb(bb(bb(bc(cc(ca(x1)))))))) | → | aa#(ab(bb(ba(x1)))) | (36) |
aa#(ab(bb(bb(bb(bc(cc(cb(x1)))))))) | → | aa#(aa(aa(aa(aa(ab(bb(bb(x1)))))))) | (38) |
aa#(ab(bb(bb(bb(bc(cc(cb(x1)))))))) | → | aa#(aa(aa(aa(ab(bb(bb(x1))))))) | (39) |
aa#(ab(bb(bb(bb(bc(cc(cb(x1)))))))) | → | aa#(aa(aa(ab(bb(bb(x1)))))) | (40) |
aa#(ab(bb(bb(bb(bc(cc(cb(x1)))))))) | → | aa#(aa(ab(bb(bb(x1))))) | (41) |
aa#(ab(bb(bb(bb(bc(cc(cb(x1)))))))) | → | aa#(ab(bb(bb(x1)))) | (42) |
aa#(ab(bb(bb(bb(bc(cc(cc(x1)))))))) | → | aa#(aa(aa(aa(aa(ab(bb(bc(x1)))))))) | (45) |
aa#(ab(bb(bb(bb(bc(cc(cc(x1)))))))) | → | aa#(aa(aa(aa(ab(bb(bc(x1))))))) | (46) |
aa#(ab(bb(bb(bb(bc(cc(cc(x1)))))))) | → | aa#(aa(aa(ab(bb(bc(x1)))))) | (47) |
[aa#(x1)] | = | 2 · x1 |
[ab(x1)] | = | x1 |
[bb(x1)] | = | -1 + x1 |
[ba(x1)] | = | 2 + x1 |
[aa(x1)] | = | x1 |
[bc(x1)] | = | 2 + x1 |
[cc(x1)] | = | 2 + x1 |
[ca(x1)] | = | x1 |
[cb(x1)] | = | x1 |
aa#(ab(bb(bb(bb(bc(cc(cb(x1)))))))) | → | aa#(aa(aa(aa(aa(ab(bb(bb(x1)))))))) | (38) |
aa#(ab(bb(bb(bb(bc(cc(cb(x1)))))))) | → | aa#(aa(aa(aa(ab(bb(bb(x1))))))) | (39) |
aa#(ab(bb(bb(bb(bc(cc(cb(x1)))))))) | → | aa#(aa(aa(ab(bb(bb(x1)))))) | (40) |
aa#(ab(bb(bb(bb(bc(cc(cb(x1)))))))) | → | aa#(aa(ab(bb(bb(x1))))) | (41) |
aa#(ab(bb(bb(bb(bc(cc(cb(x1)))))))) | → | aa#(ab(bb(bb(x1)))) | (42) |
aa#(ab(bb(bb(bb(bc(cc(cc(x1)))))))) | → | aa#(aa(aa(aa(aa(ab(bb(bc(x1)))))))) | (45) |
aa#(ab(bb(bb(bb(bc(cc(cc(x1)))))))) | → | aa#(aa(aa(aa(ab(bb(bc(x1))))))) | (46) |
aa#(ab(bb(bb(bb(bc(cc(cc(x1)))))))) | → | aa#(aa(aa(ab(bb(bc(x1)))))) | (47) |
[aa#(x1)] | = |
|
||||||||||||||||||
[ab(x1)] | = |
|
||||||||||||||||||
[bb(x1)] | = |
|
||||||||||||||||||
[bc(x1)] | = |
|
||||||||||||||||||
[cc(x1)] | = |
|
||||||||||||||||||
[ca(x1)] | = |
|
||||||||||||||||||
[aa(x1)] | = |
|
||||||||||||||||||
[ba(x1)] | = |
|
||||||||||||||||||
[cb(x1)] | = |
|
aa#(ab(bb(bb(bb(bc(cc(ca(x1)))))))) | → | aa#(aa(aa(aa(aa(ab(bb(ba(x1)))))))) | (32) |
aa#(ab(bb(bb(bb(bc(cc(ca(x1)))))))) | → | aa#(aa(aa(aa(ab(bb(ba(x1))))))) | (33) |
aa#(ab(bb(bb(bb(bc(cc(ca(x1)))))))) | → | aa#(aa(aa(ab(bb(ba(x1)))))) | (34) |
aa#(ab(bb(bb(bb(bc(cc(ca(x1)))))))) | → | aa#(aa(ab(bb(ba(x1))))) | (35) |
aa#(ab(bb(bb(bb(bc(cc(ca(x1)))))))) | → | aa#(ab(bb(ba(x1)))) | (36) |
The dependency pairs are split into 0 components.