The rewrite relation of the following TRS is considered.
| a(b(b(x1))) | → | P(a(b(x1))) | (1) |
| a(P(x1)) | → | P(a(x(x1))) | (2) |
| a(x(x1)) | → | x(a(x1)) | (3) |
| b(P(x1)) | → | b(Q(x1)) | (4) |
| Q(x(x1)) | → | a(Q(x1)) | (5) |
| Q(a(x1)) | → | b(b(a(x1))) | (6) |
| a#(b(b(x1))) | → | a#(b(x1)) | (7) |
| a#(P(x1)) | → | a#(x(x1)) | (8) |
| a#(x(x1)) | → | a#(x1) | (9) |
| b#(P(x1)) | → | b#(Q(x1)) | (10) |
| b#(P(x1)) | → | Q#(x1) | (11) |
| Q#(x(x1)) | → | a#(Q(x1)) | (12) |
| Q#(x(x1)) | → | Q#(x1) | (13) |
| Q#(a(x1)) | → | b#(b(a(x1))) | (14) |
| Q#(a(x1)) | → | b#(a(x1)) | (15) |
The dependency pairs are split into 2 components.
| Q#(x(x1)) | → | Q#(x1) | (13) |
| Q#(a(x1)) | → | b#(b(a(x1))) | (14) |
| b#(P(x1)) | → | b#(Q(x1)) | (10) |
| b#(P(x1)) | → | Q#(x1) | (11) |
| Q#(a(x1)) | → | b#(a(x1)) | (15) |
| [Q#(x1)] | = | 1 |
| [x(x1)] | = | 1 · x1 |
| [a(x1)] | = | 1 |
| [b#(x1)] | = | 1 · x1 |
| [b(x1)] | = | 0 |
| [P(x1)] | = | 1 |
| [Q(x1)] | = | 1 |
| Q#(a(x1)) | → | b#(b(a(x1))) | (14) |
| [Q#(x1)] | = |
|
||||||||||||||||||
| [x(x1)] | = |
|
||||||||||||||||||
| [b#(x1)] | = |
|
||||||||||||||||||
| [P(x1)] | = |
|
||||||||||||||||||
| [Q(x1)] | = |
|
||||||||||||||||||
| [a(x1)] | = |
|
||||||||||||||||||
| [b(x1)] | = |
|
| b#(P(x1)) | → | b#(Q(x1)) | (10) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| Q#(x(x1)) | → | Q#(x1) | (13) |
| 1 | > | 1 | |
| Q#(a(x1)) | → | b#(a(x1)) | (15) |
| 1 | ≥ | 1 | |
| b#(P(x1)) | → | Q#(x1) | (11) |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| a#(P(x1)) | → | a#(x(x1)) | (8) |
| a#(x(x1)) | → | a#(x1) | (9) |
| a#(b(b(x1))) | → | a#(b(x1)) | (7) |
| [a#(x1)] | = | 1 · x1 |
| [P(x1)] | = | 1 + 1 · x1 |
| [x(x1)] | = | 1 · x1 |
| [b(x1)] | = | 0 |
| [Q(x1)] | = | 0 |
| [a(x1)] | = | 0 |
| b(P(x1)) | → | b(Q(x1)) | (4) |
| a#(P(x1)) | → | a#(x(x1)) | (8) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| a#(x(x1)) | → | a#(x1) | (9) |
| 1 | > | 1 | |
| a#(b(b(x1))) | → | a#(b(x1)) | (7) |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.