The rewrite relation of the following TRS is considered.
| 3(1(x1)) | → | 4(1(x1)) | (1) |
| 5(9(x1)) | → | 2(6(5(x1))) | (2) |
| 3(5(x1)) | → | 8(9(7(x1))) | (3) |
| 9(x1) | → | 3(2(3(x1))) | (4) |
| 8(4(x1)) | → | 6(x1) | (5) |
| 2(6(x1)) | → | 4(3(x1)) | (6) |
| 3(8(x1)) | → | 3(2(7(x1))) | (7) |
| 9(x1) | → | 5(0(2(x1))) | (8) |
| 8(8(4(x1))) | → | 1(9(x1)) | (9) |
| 7(1(x1)) | → | 6(9(x1)) | (10) |
| 3(9(x1)) | → | 9(3(x1)) | (11) |
| 7(5(x1)) | → | 1(0(x1)) | (12) |
| 5#(9(x1)) | → | 2#(6(5(x1))) | (13) |
| 5#(9(x1)) | → | 5#(x1) | (14) |
| 3#(5(x1)) | → | 8#(9(7(x1))) | (15) |
| 3#(5(x1)) | → | 9#(7(x1)) | (16) |
| 3#(5(x1)) | → | 7#(x1) | (17) |
| 9#(x1) | → | 3#(2(3(x1))) | (18) |
| 9#(x1) | → | 2#(3(x1)) | (19) |
| 9#(x1) | → | 3#(x1) | (20) |
| 2#(6(x1)) | → | 3#(x1) | (21) |
| 3#(8(x1)) | → | 3#(2(7(x1))) | (22) |
| 3#(8(x1)) | → | 2#(7(x1)) | (23) |
| 3#(8(x1)) | → | 7#(x1) | (24) |
| 9#(x1) | → | 5#(0(2(x1))) | (25) |
| 9#(x1) | → | 2#(x1) | (26) |
| 8#(8(4(x1))) | → | 9#(x1) | (27) |
| 7#(1(x1)) | → | 9#(x1) | (28) |
| 3#(9(x1)) | → | 9#(3(x1)) | (29) |
| 3#(9(x1)) | → | 3#(x1) | (30) |
The dependency pairs are split into 2 components.
| 5#(9(x1)) | → | 5#(x1) | (14) |
| [9(x1)] | = | 1 · x1 |
| [5#(x1)] | = | 1 · x1 |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| 5#(9(x1)) | → | 5#(x1) | (14) |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| 8#(8(4(x1))) | → | 9#(x1) | (27) |
| 9#(x1) | → | 3#(2(3(x1))) | (18) |
| 3#(5(x1)) | → | 8#(9(7(x1))) | (15) |
| 3#(5(x1)) | → | 9#(7(x1)) | (16) |
| 9#(x1) | → | 2#(3(x1)) | (19) |
| 2#(6(x1)) | → | 3#(x1) | (21) |
| 3#(5(x1)) | → | 7#(x1) | (17) |
| 7#(1(x1)) | → | 9#(x1) | (28) |
| 9#(x1) | → | 3#(x1) | (20) |
| 3#(8(x1)) | → | 3#(2(7(x1))) | (22) |
| 3#(8(x1)) | → | 2#(7(x1)) | (23) |
| 3#(8(x1)) | → | 7#(x1) | (24) |
| 3#(9(x1)) | → | 9#(3(x1)) | (29) |
| 9#(x1) | → | 2#(x1) | (26) |
| 3#(9(x1)) | → | 3#(x1) | (30) |
| [3(x1)] | = | 1 · x1 |
| [1(x1)] | = | 1 · x1 |
| [4(x1)] | = | 1 · x1 |
| [5(x1)] | = | 1 · x1 |
| [8(x1)] | = | 1 · x1 |
| [9(x1)] | = | 1 · x1 |
| [7(x1)] | = | 1 · x1 |
| [2(x1)] | = | 1 · x1 |
| [6(x1)] | = | 1 · x1 |
| [0(x1)] | = | 1 · x1 |
| [9#(x1)] | = | 1 · x1 |
| [8#(x1)] | = | 1 · x1 |
| [3#(x1)] | = | 1 · x1 |
| [2#(x1)] | = | 1 · x1 |
| [7#(x1)] | = | 1 · x1 |
| 3(1(x1)) | → | 4(1(x1)) | (1) |
| 3(5(x1)) | → | 8(9(7(x1))) | (3) |
| 3(8(x1)) | → | 3(2(7(x1))) | (7) |
| 3(9(x1)) | → | 9(3(x1)) | (11) |
| 9(x1) | → | 3(2(3(x1))) | (4) |
| 7(1(x1)) | → | 6(9(x1)) | (10) |
| 7(5(x1)) | → | 1(0(x1)) | (12) |
| 2(6(x1)) | → | 4(3(x1)) | (6) |
| 9(x1) | → | 5(0(2(x1))) | (8) |
| 8(4(x1)) | → | 6(x1) | (5) |
| 8(8(4(x1))) | → | 1(9(x1)) | (9) |
| [2#(x1)] | = | 0 |
| [8#(x1)] | = | -2 + 2 · x1 |
| [9#(x1)] | = | -2 |
| [2(x1)] | = | -2 |
| [3#(x1)] | = | -2 |
| [4(x1)] | = | -2 |
| [3(x1)] | = | 2 · x1 |
| [1(x1)] | = | 2 |
| [5(x1)] | = | 1 |
| [8(x1)] | = | 2 |
| [9(x1)] | = | 1 |
| [7(x1)] | = | 0 |
| [0(x1)] | = | -2 |
| [6(x1)] | = | 2 |
| [7#(x1)] | = | 0 |
| 3(1(x1)) | → | 4(1(x1)) | (1) |
| 3(5(x1)) | → | 8(9(7(x1))) | (3) |
| 3(9(x1)) | → | 9(3(x1)) | (11) |
| 9(x1) | → | 3(2(3(x1))) | (4) |
| 3(8(x1)) | → | 3(2(7(x1))) | (7) |
| 2(6(x1)) | → | 4(3(x1)) | (6) |
| 9(x1) | → | 5(0(2(x1))) | (8) |
| 8(8(4(x1))) | → | 1(9(x1)) | (9) |
| 8(4(x1)) | → | 6(x1) | (5) |
| 8#(8(4(x1))) | → | 9#(x1) | (27) |
The dependency pairs are split into 1 component.
| 3#(5(x1)) | → | 9#(7(x1)) | (16) |
| 9#(x1) | → | 3#(2(3(x1))) | (18) |
| 3#(5(x1)) | → | 7#(x1) | (17) |
| 7#(1(x1)) | → | 9#(x1) | (28) |
| 9#(x1) | → | 2#(3(x1)) | (19) |
| 2#(6(x1)) | → | 3#(x1) | (21) |
| 3#(8(x1)) | → | 3#(2(7(x1))) | (22) |
| 3#(8(x1)) | → | 2#(7(x1)) | (23) |
| 3#(8(x1)) | → | 7#(x1) | (24) |
| 3#(9(x1)) | → | 9#(3(x1)) | (29) |
| 9#(x1) | → | 3#(x1) | (20) |
| 3#(9(x1)) | → | 3#(x1) | (30) |
| 9#(x1) | → | 2#(x1) | (26) |
| [3#(x1)] | = |
|
||||||||||||||||||
| [5(x1)] | = |
|
||||||||||||||||||
| [9#(x1)] | = |
|
||||||||||||||||||
| [7(x1)] | = |
|
||||||||||||||||||
| [2(x1)] | = |
|
||||||||||||||||||
| [3(x1)] | = |
|
||||||||||||||||||
| [7#(x1)] | = |
|
||||||||||||||||||
| [1(x1)] | = |
|
||||||||||||||||||
| [2#(x1)] | = |
|
||||||||||||||||||
| [6(x1)] | = |
|
||||||||||||||||||
| [8(x1)] | = |
|
||||||||||||||||||
| [9(x1)] | = |
|
||||||||||||||||||
| [0(x1)] | = |
|
||||||||||||||||||
| [4(x1)] | = |
|
| 7#(1(x1)) | → | 9#(x1) | (28) |
The dependency pairs are split into 1 component.
| 9#(x1) | → | 3#(2(3(x1))) | (18) |
| 3#(5(x1)) | → | 9#(7(x1)) | (16) |
| 9#(x1) | → | 2#(3(x1)) | (19) |
| 2#(6(x1)) | → | 3#(x1) | (21) |
| 3#(8(x1)) | → | 3#(2(7(x1))) | (22) |
| 3#(8(x1)) | → | 2#(7(x1)) | (23) |
| 3#(9(x1)) | → | 9#(3(x1)) | (29) |
| 9#(x1) | → | 3#(x1) | (20) |
| 3#(9(x1)) | → | 3#(x1) | (30) |
| 9#(x1) | → | 2#(x1) | (26) |
| [9#(x1)] | = |
|
||||||||||||||||||
| [3#(x1)] | = |
|
||||||||||||||||||
| [2(x1)] | = |
|
||||||||||||||||||
| [3(x1)] | = |
|
||||||||||||||||||
| [5(x1)] | = |
|
||||||||||||||||||
| [7(x1)] | = |
|
||||||||||||||||||
| [2#(x1)] | = |
|
||||||||||||||||||
| [6(x1)] | = |
|
||||||||||||||||||
| [8(x1)] | = |
|
||||||||||||||||||
| [9(x1)] | = |
|
||||||||||||||||||
| [1(x1)] | = |
|
||||||||||||||||||
| [4(x1)] | = |
|
||||||||||||||||||
| [0(x1)] | = |
|
| 2#(6(x1)) | → | 3#(x1) | (21) |
The dependency pairs are split into 1 component.
| 3#(5(x1)) | → | 9#(7(x1)) | (16) |
| 9#(x1) | → | 3#(2(3(x1))) | (18) |
| 3#(8(x1)) | → | 3#(2(7(x1))) | (22) |
| 3#(9(x1)) | → | 9#(3(x1)) | (29) |
| 9#(x1) | → | 3#(x1) | (20) |
| 3#(9(x1)) | → | 3#(x1) | (30) |
| [3#(x1)] | = | 1 · x1 |
| [5(x1)] | = | 1 |
| [9#(x1)] | = | 1 · x1 |
| [7(x1)] | = | 0 |
| [2(x1)] | = | 0 |
| [3(x1)] | = | 1 · x1 |
| [8(x1)] | = | 0 |
| [9(x1)] | = | 1 + 1 · x1 |
| [1(x1)] | = | 0 |
| [6(x1)] | = | 0 |
| [0(x1)] | = | 0 |
| [4(x1)] | = | 0 |
| 3#(5(x1)) | → | 9#(7(x1)) | (16) |
| 3#(9(x1)) | → | 9#(3(x1)) | (29) |
| 3#(9(x1)) | → | 3#(x1) | (30) |
The dependency pairs are split into 1 component.
| 3#(8(x1)) | → | 3#(2(7(x1))) | (22) |
| [3#(x1)] | = | 1 · x1 |
| [8(x1)] | = | 1 + 1 · x1 |
| [2(x1)] | = | 0 |
| [7(x1)] | = | 1 · x1 |
| [1(x1)] | = | 1 |
| [6(x1)] | = | 1 |
| [9(x1)] | = | 1 + 1 · x1 |
| [5(x1)] | = | 1 + 1 · x1 |
| [0(x1)] | = | 1 · x1 |
| [4(x1)] | = | 0 |
| [3(x1)] | = | 1 + 1 · x1 |
| 2(6(x1)) | → | 4(3(x1)) | (6) |
| 3#(8(x1)) | → | 3#(2(7(x1))) | (22) |
There are no pairs anymore.