The rewrite relation of the following TRS is considered.
a(b(b(b(x1)))) | → | b(a(b(a(x1)))) | (1) |
b(a(b(a(x1)))) | → | b(b(b(b(x1)))) | (2) |
a(a(a(b(x1)))) | → | a(b(a(a(x1)))) | (3) |
a#(b(b(b(x1)))) | → | b#(a(b(a(x1)))) | (4) |
a#(b(b(b(x1)))) | → | a#(b(a(x1))) | (5) |
a#(b(b(b(x1)))) | → | b#(a(x1)) | (6) |
a#(b(b(b(x1)))) | → | a#(x1) | (7) |
b#(a(b(a(x1)))) | → | b#(b(b(b(x1)))) | (8) |
b#(a(b(a(x1)))) | → | b#(b(b(x1))) | (9) |
b#(a(b(a(x1)))) | → | b#(b(x1)) | (10) |
b#(a(b(a(x1)))) | → | b#(x1) | (11) |
a#(a(a(b(x1)))) | → | a#(b(a(a(x1)))) | (12) |
a#(a(a(b(x1)))) | → | b#(a(a(x1))) | (13) |
a#(a(a(b(x1)))) | → | a#(a(x1)) | (14) |
a#(a(a(b(x1)))) | → | a#(x1) | (15) |
The dependency pairs are split into 2 components.
a#(b(b(b(x1)))) | → | a#(x1) | (7) |
a#(b(b(b(x1)))) | → | a#(b(a(x1))) | (5) |
a#(a(a(b(x1)))) | → | a#(b(a(a(x1)))) | (12) |
a#(a(a(b(x1)))) | → | a#(a(x1)) | (14) |
a#(a(a(b(x1)))) | → | a#(x1) | (15) |
[a#(x1)] | = | 1 · x1 |
[b(x1)] | = | 1 + 1 · x1 |
[a(x1)] | = | 1 + 1 · x1 |
a#(b(b(b(x1)))) | → | a#(x1) | (7) |
a#(b(b(b(x1)))) | → | a#(b(a(x1))) | (5) |
a#(a(a(b(x1)))) | → | a#(a(x1)) | (14) |
a#(a(a(b(x1)))) | → | a#(x1) | (15) |
[a#(x1)] | = | 1 · x1 |
[a(x1)] | = | 1 + 1 · x1 |
[b(x1)] | = | 1 |
b(a(b(a(x1)))) | → | b(b(b(b(x1)))) | (2) |
a#(a(a(b(x1)))) | → | a#(b(a(a(x1)))) | (12) |
There are no pairs anymore.
b#(a(b(a(x1)))) | → | b#(b(b(x1))) | (9) |
b#(a(b(a(x1)))) | → | b#(b(b(b(x1)))) | (8) |
b#(a(b(a(x1)))) | → | b#(b(x1)) | (10) |
b#(a(b(a(x1)))) | → | b#(x1) | (11) |
[b(x1)] | = | 1 · x1 |
[a(x1)] | = | 1 · x1 |
[b#(x1)] | = | 1 · x1 |
b(a(b(a(x1)))) | → | b(b(b(b(x1)))) | (2) |
The dependency pairs are split into 1 component.
b#(a(b(a(x1)))) | → | b#(x1) | (11) |
[a(x1)] | = | 1 · x1 |
[b(x1)] | = | 1 · x1 |
[b#(x1)] | = | 1 · x1 |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
b#(a(b(a(x1)))) | → | b#(x1) | (11) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.