The rewrite relation of the following TRS is considered.
| b(c(a(x1))) | → | a(b(a(b(c(x1))))) | (1) |
| b(x1) | → | c(c(x1)) | (2) |
| c(d(x1)) | → | a(b(c(a(x1)))) | (3) |
| a(a(x1)) | → | a(c(b(a(x1)))) | (4) |
| a(c(b(x1))) | → | c(b(a(b(a(x1))))) | (5) |
| b(x1) | → | c(c(x1)) | (2) |
| d(c(x1)) | → | a(c(b(a(x1)))) | (6) |
| a(a(x1)) | → | a(b(c(a(x1)))) | (7) |
{a(☐), c(☐), b(☐), d(☐)}
We obtain the transformed TRS| a(a(x1)) | → | a(b(c(a(x1)))) | (7) |
| a(a(c(b(x1)))) | → | a(c(b(a(b(a(x1)))))) | (8) |
| c(a(c(b(x1)))) | → | c(c(b(a(b(a(x1)))))) | (9) |
| b(a(c(b(x1)))) | → | b(c(b(a(b(a(x1)))))) | (10) |
| d(a(c(b(x1)))) | → | d(c(b(a(b(a(x1)))))) | (11) |
| a(b(x1)) | → | a(c(c(x1))) | (12) |
| c(b(x1)) | → | c(c(c(x1))) | (13) |
| b(b(x1)) | → | b(c(c(x1))) | (14) |
| d(b(x1)) | → | d(c(c(x1))) | (15) |
| a(d(c(x1))) | → | a(a(c(b(a(x1))))) | (16) |
| c(d(c(x1))) | → | c(a(c(b(a(x1))))) | (17) |
| b(d(c(x1))) | → | b(a(c(b(a(x1))))) | (18) |
| d(d(c(x1))) | → | d(a(c(b(a(x1))))) | (19) |
Root-labeling is applied.
We obtain the labeled TRS| aa(aa(x1)) | → | ab(bc(ca(aa(x1)))) | (20) |
| aa(ab(x1)) | → | ab(bc(ca(ab(x1)))) | (21) |
| aa(ac(x1)) | → | ab(bc(ca(ac(x1)))) | (22) |
| aa(ad(x1)) | → | ab(bc(ca(ad(x1)))) | (23) |
| aa(ac(cb(ba(x1)))) | → | ac(cb(ba(ab(ba(aa(x1)))))) | (24) |
| aa(ac(cb(bb(x1)))) | → | ac(cb(ba(ab(ba(ab(x1)))))) | (25) |
| aa(ac(cb(bc(x1)))) | → | ac(cb(ba(ab(ba(ac(x1)))))) | (26) |
| aa(ac(cb(bd(x1)))) | → | ac(cb(ba(ab(ba(ad(x1)))))) | (27) |
| ca(ac(cb(ba(x1)))) | → | cc(cb(ba(ab(ba(aa(x1)))))) | (28) |
| ca(ac(cb(bb(x1)))) | → | cc(cb(ba(ab(ba(ab(x1)))))) | (29) |
| ca(ac(cb(bc(x1)))) | → | cc(cb(ba(ab(ba(ac(x1)))))) | (30) |
| ca(ac(cb(bd(x1)))) | → | cc(cb(ba(ab(ba(ad(x1)))))) | (31) |
| ba(ac(cb(ba(x1)))) | → | bc(cb(ba(ab(ba(aa(x1)))))) | (32) |
| ba(ac(cb(bb(x1)))) | → | bc(cb(ba(ab(ba(ab(x1)))))) | (33) |
| ba(ac(cb(bc(x1)))) | → | bc(cb(ba(ab(ba(ac(x1)))))) | (34) |
| ba(ac(cb(bd(x1)))) | → | bc(cb(ba(ab(ba(ad(x1)))))) | (35) |
| da(ac(cb(ba(x1)))) | → | dc(cb(ba(ab(ba(aa(x1)))))) | (36) |
| da(ac(cb(bb(x1)))) | → | dc(cb(ba(ab(ba(ab(x1)))))) | (37) |
| da(ac(cb(bc(x1)))) | → | dc(cb(ba(ab(ba(ac(x1)))))) | (38) |
| da(ac(cb(bd(x1)))) | → | dc(cb(ba(ab(ba(ad(x1)))))) | (39) |
| ab(ba(x1)) | → | ac(cc(ca(x1))) | (40) |
| ab(bb(x1)) | → | ac(cc(cb(x1))) | (41) |
| ab(bc(x1)) | → | ac(cc(cc(x1))) | (42) |
| ab(bd(x1)) | → | ac(cc(cd(x1))) | (43) |
| cb(ba(x1)) | → | cc(cc(ca(x1))) | (44) |
| cb(bb(x1)) | → | cc(cc(cb(x1))) | (45) |
| cb(bc(x1)) | → | cc(cc(cc(x1))) | (46) |
| cb(bd(x1)) | → | cc(cc(cd(x1))) | (47) |
| bb(ba(x1)) | → | bc(cc(ca(x1))) | (48) |
| bb(bb(x1)) | → | bc(cc(cb(x1))) | (49) |
| bb(bc(x1)) | → | bc(cc(cc(x1))) | (50) |
| bb(bd(x1)) | → | bc(cc(cd(x1))) | (51) |
| db(ba(x1)) | → | dc(cc(ca(x1))) | (52) |
| db(bb(x1)) | → | dc(cc(cb(x1))) | (53) |
| db(bc(x1)) | → | dc(cc(cc(x1))) | (54) |
| db(bd(x1)) | → | dc(cc(cd(x1))) | (55) |
| ad(dc(ca(x1))) | → | aa(ac(cb(ba(aa(x1))))) | (56) |
| ad(dc(cb(x1))) | → | aa(ac(cb(ba(ab(x1))))) | (57) |
| ad(dc(cc(x1))) | → | aa(ac(cb(ba(ac(x1))))) | (58) |
| ad(dc(cd(x1))) | → | aa(ac(cb(ba(ad(x1))))) | (59) |
| cd(dc(ca(x1))) | → | ca(ac(cb(ba(aa(x1))))) | (60) |
| cd(dc(cb(x1))) | → | ca(ac(cb(ba(ab(x1))))) | (61) |
| cd(dc(cc(x1))) | → | ca(ac(cb(ba(ac(x1))))) | (62) |
| cd(dc(cd(x1))) | → | ca(ac(cb(ba(ad(x1))))) | (63) |
| bd(dc(ca(x1))) | → | ba(ac(cb(ba(aa(x1))))) | (64) |
| bd(dc(cb(x1))) | → | ba(ac(cb(ba(ab(x1))))) | (65) |
| bd(dc(cc(x1))) | → | ba(ac(cb(ba(ac(x1))))) | (66) |
| bd(dc(cd(x1))) | → | ba(ac(cb(ba(ad(x1))))) | (67) |
| dd(dc(ca(x1))) | → | da(ac(cb(ba(aa(x1))))) | (68) |
| dd(dc(cb(x1))) | → | da(ac(cb(ba(ab(x1))))) | (69) |
| dd(dc(cc(x1))) | → | da(ac(cb(ba(ac(x1))))) | (70) |
| dd(dc(cd(x1))) | → | da(ac(cb(ba(ad(x1))))) | (71) |
| [aa(x1)] | = | 1 · x1 |
| [ab(x1)] | = | 1 · x1 |
| [bc(x1)] | = | 1 · x1 |
| [ca(x1)] | = | 1 · x1 |
| [ac(x1)] | = | 1 · x1 |
| [ad(x1)] | = | 1 · x1 + 3 |
| [cb(x1)] | = | 1 · x1 |
| [ba(x1)] | = | 1 · x1 |
| [bb(x1)] | = | 1 · x1 |
| [bd(x1)] | = | 1 · x1 + 3 |
| [cc(x1)] | = | 1 · x1 |
| [da(x1)] | = | 1 · x1 + 1 |
| [dc(x1)] | = | 1 · x1 |
| [cd(x1)] | = | 1 · x1 + 2 |
| [db(x1)] | = | 1 · x1 + 1 |
| [dd(x1)] | = | 1 · x1 + 3 |
| da(ac(cb(ba(x1)))) | → | dc(cb(ba(ab(ba(aa(x1)))))) | (36) |
| da(ac(cb(bb(x1)))) | → | dc(cb(ba(ab(ba(ab(x1)))))) | (37) |
| da(ac(cb(bc(x1)))) | → | dc(cb(ba(ab(ba(ac(x1)))))) | (38) |
| da(ac(cb(bd(x1)))) | → | dc(cb(ba(ab(ba(ad(x1)))))) | (39) |
| ab(bd(x1)) | → | ac(cc(cd(x1))) | (43) |
| cb(bd(x1)) | → | cc(cc(cd(x1))) | (47) |
| bb(bd(x1)) | → | bc(cc(cd(x1))) | (51) |
| db(ba(x1)) | → | dc(cc(ca(x1))) | (52) |
| db(bb(x1)) | → | dc(cc(cb(x1))) | (53) |
| db(bc(x1)) | → | dc(cc(cc(x1))) | (54) |
| db(bd(x1)) | → | dc(cc(cd(x1))) | (55) |
| ad(dc(ca(x1))) | → | aa(ac(cb(ba(aa(x1))))) | (56) |
| ad(dc(cb(x1))) | → | aa(ac(cb(ba(ab(x1))))) | (57) |
| ad(dc(cc(x1))) | → | aa(ac(cb(ba(ac(x1))))) | (58) |
| ad(dc(cd(x1))) | → | aa(ac(cb(ba(ad(x1))))) | (59) |
| cd(dc(ca(x1))) | → | ca(ac(cb(ba(aa(x1))))) | (60) |
| cd(dc(cb(x1))) | → | ca(ac(cb(ba(ab(x1))))) | (61) |
| cd(dc(cc(x1))) | → | ca(ac(cb(ba(ac(x1))))) | (62) |
| cd(dc(cd(x1))) | → | ca(ac(cb(ba(ad(x1))))) | (63) |
| bd(dc(ca(x1))) | → | ba(ac(cb(ba(aa(x1))))) | (64) |
| bd(dc(cb(x1))) | → | ba(ac(cb(ba(ab(x1))))) | (65) |
| bd(dc(cc(x1))) | → | ba(ac(cb(ba(ac(x1))))) | (66) |
| bd(dc(cd(x1))) | → | ba(ac(cb(ba(ad(x1))))) | (67) |
| dd(dc(ca(x1))) | → | da(ac(cb(ba(aa(x1))))) | (68) |
| dd(dc(cb(x1))) | → | da(ac(cb(ba(ab(x1))))) | (69) |
| dd(dc(cc(x1))) | → | da(ac(cb(ba(ac(x1))))) | (70) |
| dd(dc(cd(x1))) | → | da(ac(cb(ba(ad(x1))))) | (71) |
| [aa(x1)] | = | 1 · x1 |
| [ab(x1)] | = | 1 · x1 |
| [bc(x1)] | = | 1 · x1 |
| [ca(x1)] | = | 1 · x1 |
| [ac(x1)] | = | 1 · x1 |
| [ad(x1)] | = | 1 · x1 |
| [cb(x1)] | = | 1 · x1 |
| [ba(x1)] | = | 1 · x1 |
| [bb(x1)] | = | 1 · x1 |
| [bd(x1)] | = | 1 · x1 + 1 |
| [cc(x1)] | = | 1 · x1 |
| aa(ac(cb(bd(x1)))) | → | ac(cb(ba(ab(ba(ad(x1)))))) | (27) |
| ca(ac(cb(bd(x1)))) | → | cc(cb(ba(ab(ba(ad(x1)))))) | (31) |
| ba(ac(cb(bd(x1)))) | → | bc(cb(ba(ab(ba(ad(x1)))))) | (35) |
| [aa(x1)] | = | 1 · x1 |
| [ab(x1)] | = | 1 · x1 |
| [bc(x1)] | = | 1 · x1 |
| [ca(x1)] | = | 1 · x1 |
| [ac(x1)] | = | 1 · x1 |
| [ad(x1)] | = | 1 · x1 |
| [cb(x1)] | = | 1 · x1 + 1 |
| [ba(x1)] | = | 1 · x1 |
| [bb(x1)] | = | 1 · x1 + 1 |
| [cc(x1)] | = | 1 · x1 |
| aa(ac(cb(bb(x1)))) | → | ac(cb(ba(ab(ba(ab(x1)))))) | (25) |
| ca(ac(cb(bb(x1)))) | → | cc(cb(ba(ab(ba(ab(x1)))))) | (29) |
| ba(ac(cb(bb(x1)))) | → | bc(cb(ba(ab(ba(ab(x1)))))) | (33) |
| cb(ba(x1)) | → | cc(cc(ca(x1))) | (44) |
| cb(bb(x1)) | → | cc(cc(cb(x1))) | (45) |
| cb(bc(x1)) | → | cc(cc(cc(x1))) | (46) |
| bb(ba(x1)) | → | bc(cc(ca(x1))) | (48) |
| bb(bb(x1)) | → | bc(cc(cb(x1))) | (49) |
| bb(bc(x1)) | → | bc(cc(cc(x1))) | (50) |
| [aa(x1)] | = | 1 · x1 |
| [ab(x1)] | = | 1 · x1 |
| [bc(x1)] | = | 1 · x1 |
| [ca(x1)] | = | 1 · x1 |
| [ac(x1)] | = | 1 · x1 |
| [ad(x1)] | = | 1 · x1 |
| [cb(x1)] | = | 1 · x1 |
| [ba(x1)] | = | 1 · x1 |
| [cc(x1)] | = | 1 · x1 |
| [bb(x1)] | = | 1 · x1 + 1 |
| ab(bb(x1)) | → | ac(cc(cb(x1))) | (41) |
| aa#(aa(x1)) | → | ab#(bc(ca(aa(x1)))) | (72) |
| aa#(aa(x1)) | → | ca#(aa(x1)) | (73) |
| aa#(ab(x1)) | → | ab#(bc(ca(ab(x1)))) | (74) |
| aa#(ab(x1)) | → | ca#(ab(x1)) | (75) |
| aa#(ac(x1)) | → | ab#(bc(ca(ac(x1)))) | (76) |
| aa#(ac(x1)) | → | ca#(ac(x1)) | (77) |
| aa#(ad(x1)) | → | ab#(bc(ca(ad(x1)))) | (78) |
| aa#(ad(x1)) | → | ca#(ad(x1)) | (79) |
| aa#(ac(cb(ba(x1)))) | → | ba#(ab(ba(aa(x1)))) | (80) |
| aa#(ac(cb(ba(x1)))) | → | ab#(ba(aa(x1))) | (81) |
| aa#(ac(cb(ba(x1)))) | → | ba#(aa(x1)) | (82) |
| aa#(ac(cb(ba(x1)))) | → | aa#(x1) | (83) |
| aa#(ac(cb(bc(x1)))) | → | ba#(ab(ba(ac(x1)))) | (84) |
| aa#(ac(cb(bc(x1)))) | → | ab#(ba(ac(x1))) | (85) |
| aa#(ac(cb(bc(x1)))) | → | ba#(ac(x1)) | (86) |
| ca#(ac(cb(ba(x1)))) | → | ba#(ab(ba(aa(x1)))) | (87) |
| ca#(ac(cb(ba(x1)))) | → | ab#(ba(aa(x1))) | (88) |
| ca#(ac(cb(ba(x1)))) | → | ba#(aa(x1)) | (89) |
| ca#(ac(cb(ba(x1)))) | → | aa#(x1) | (90) |
| ca#(ac(cb(bc(x1)))) | → | ba#(ab(ba(ac(x1)))) | (91) |
| ca#(ac(cb(bc(x1)))) | → | ab#(ba(ac(x1))) | (92) |
| ca#(ac(cb(bc(x1)))) | → | ba#(ac(x1)) | (93) |
| ba#(ac(cb(ba(x1)))) | → | ba#(ab(ba(aa(x1)))) | (94) |
| ba#(ac(cb(ba(x1)))) | → | ab#(ba(aa(x1))) | (95) |
| ba#(ac(cb(ba(x1)))) | → | ba#(aa(x1)) | (96) |
| ba#(ac(cb(ba(x1)))) | → | aa#(x1) | (97) |
| ba#(ac(cb(bc(x1)))) | → | ba#(ab(ba(ac(x1)))) | (98) |
| ba#(ac(cb(bc(x1)))) | → | ab#(ba(ac(x1))) | (99) |
| ba#(ac(cb(bc(x1)))) | → | ba#(ac(x1)) | (100) |
| ab#(ba(x1)) | → | ca#(x1) | (101) |
The dependency pairs are split into 1 component.
| aa#(aa(x1)) | → | ca#(aa(x1)) | (73) |
| ca#(ac(cb(ba(x1)))) | → | ba#(ab(ba(aa(x1)))) | (87) |
| ba#(ac(cb(ba(x1)))) | → | ba#(ab(ba(aa(x1)))) | (94) |
| ba#(ac(cb(ba(x1)))) | → | ab#(ba(aa(x1))) | (95) |
| ab#(ba(x1)) | → | ca#(x1) | (101) |
| ca#(ac(cb(ba(x1)))) | → | ab#(ba(aa(x1))) | (88) |
| ca#(ac(cb(ba(x1)))) | → | ba#(aa(x1)) | (89) |
| ba#(ac(cb(ba(x1)))) | → | ba#(aa(x1)) | (96) |
| ba#(ac(cb(ba(x1)))) | → | aa#(x1) | (97) |
| aa#(ab(x1)) | → | ca#(ab(x1)) | (75) |
| ca#(ac(cb(ba(x1)))) | → | aa#(x1) | (90) |
| aa#(ac(x1)) | → | ca#(ac(x1)) | (77) |
| ca#(ac(cb(bc(x1)))) | → | ba#(ab(ba(ac(x1)))) | (91) |
| ba#(ac(cb(bc(x1)))) | → | ba#(ab(ba(ac(x1)))) | (98) |
| ba#(ac(cb(bc(x1)))) | → | ab#(ba(ac(x1))) | (99) |
| ba#(ac(cb(bc(x1)))) | → | ba#(ac(x1)) | (100) |
| ca#(ac(cb(bc(x1)))) | → | ab#(ba(ac(x1))) | (92) |
| ca#(ac(cb(bc(x1)))) | → | ba#(ac(x1)) | (93) |
| aa#(ac(cb(ba(x1)))) | → | ba#(ab(ba(aa(x1)))) | (80) |
| aa#(ac(cb(ba(x1)))) | → | ab#(ba(aa(x1))) | (81) |
| aa#(ac(cb(ba(x1)))) | → | ba#(aa(x1)) | (82) |
| aa#(ac(cb(ba(x1)))) | → | aa#(x1) | (83) |
| aa#(ac(cb(bc(x1)))) | → | ba#(ab(ba(ac(x1)))) | (84) |
| aa#(ac(cb(bc(x1)))) | → | ab#(ba(ac(x1))) | (85) |
| aa#(ac(cb(bc(x1)))) | → | ba#(ac(x1)) | (86) |
| [aa#(x1)] | = | 1 · x1 |
| [aa(x1)] | = | 1 · x1 |
| [ca#(x1)] | = | 1 · x1 |
| [ac(x1)] | = | 1 · x1 |
| [cb(x1)] | = | 1 + 1 · x1 |
| [ba(x1)] | = | 1 · x1 |
| [ba#(x1)] | = | 1 · x1 |
| [ab(x1)] | = | 0 |
| [ab#(x1)] | = | 1 · x1 |
| [bc(x1)] | = | 1 · x1 |
| [ca(x1)] | = | 0 |
| [ad(x1)] | = | 1 · x1 |
| [cc(x1)] | = | 0 |
| aa(aa(x1)) | → | ab(bc(ca(aa(x1)))) | (20) |
| aa(ab(x1)) | → | ab(bc(ca(ab(x1)))) | (21) |
| aa(ac(x1)) | → | ab(bc(ca(ac(x1)))) | (22) |
| aa(ad(x1)) | → | ab(bc(ca(ad(x1)))) | (23) |
| aa(ac(cb(ba(x1)))) | → | ac(cb(ba(ab(ba(aa(x1)))))) | (24) |
| aa(ac(cb(bc(x1)))) | → | ac(cb(ba(ab(ba(ac(x1)))))) | (26) |
| ba(ac(cb(ba(x1)))) | → | bc(cb(ba(ab(ba(aa(x1)))))) | (32) |
| ba(ac(cb(bc(x1)))) | → | bc(cb(ba(ab(ba(ac(x1)))))) | (34) |
| ab(ba(x1)) | → | ac(cc(ca(x1))) | (40) |
| ab(bc(x1)) | → | ac(cc(cc(x1))) | (42) |
| ca#(ac(cb(ba(x1)))) | → | ba#(ab(ba(aa(x1)))) | (87) |
| ba#(ac(cb(ba(x1)))) | → | ba#(ab(ba(aa(x1)))) | (94) |
| ba#(ac(cb(ba(x1)))) | → | ab#(ba(aa(x1))) | (95) |
| ca#(ac(cb(ba(x1)))) | → | ab#(ba(aa(x1))) | (88) |
| ca#(ac(cb(ba(x1)))) | → | ba#(aa(x1)) | (89) |
| ba#(ac(cb(ba(x1)))) | → | ba#(aa(x1)) | (96) |
| ba#(ac(cb(ba(x1)))) | → | aa#(x1) | (97) |
| ca#(ac(cb(ba(x1)))) | → | aa#(x1) | (90) |
| ca#(ac(cb(bc(x1)))) | → | ba#(ab(ba(ac(x1)))) | (91) |
| ba#(ac(cb(bc(x1)))) | → | ba#(ab(ba(ac(x1)))) | (98) |
| ba#(ac(cb(bc(x1)))) | → | ab#(ba(ac(x1))) | (99) |
| ba#(ac(cb(bc(x1)))) | → | ba#(ac(x1)) | (100) |
| ca#(ac(cb(bc(x1)))) | → | ab#(ba(ac(x1))) | (92) |
| ca#(ac(cb(bc(x1)))) | → | ba#(ac(x1)) | (93) |
| aa#(ac(cb(ba(x1)))) | → | ba#(ab(ba(aa(x1)))) | (80) |
| aa#(ac(cb(ba(x1)))) | → | ab#(ba(aa(x1))) | (81) |
| aa#(ac(cb(ba(x1)))) | → | ba#(aa(x1)) | (82) |
| aa#(ac(cb(ba(x1)))) | → | aa#(x1) | (83) |
| aa#(ac(cb(bc(x1)))) | → | ba#(ab(ba(ac(x1)))) | (84) |
| aa#(ac(cb(bc(x1)))) | → | ab#(ba(ac(x1))) | (85) |
| aa#(ac(cb(bc(x1)))) | → | ba#(ac(x1)) | (86) |
The dependency pairs are split into 0 components.