The rewrite relation of the following TRS is considered.
b(c(a(x1))) | → | a(b(a(b(c(x1))))) | (1) |
b(x1) | → | c(c(x1)) | (2) |
c(d(x1)) | → | a(b(c(a(x1)))) | (3) |
a(a(x1)) | → | a(c(b(a(x1)))) | (4) |
a(c(b(x1))) | → | c(b(a(b(a(x1))))) | (5) |
b(x1) | → | c(c(x1)) | (2) |
d(c(x1)) | → | a(c(b(a(x1)))) | (6) |
a(a(x1)) | → | a(b(c(a(x1)))) | (7) |
{a(☐), c(☐), b(☐), d(☐)}
We obtain the transformed TRSa(a(x1)) | → | a(b(c(a(x1)))) | (7) |
a(a(c(b(x1)))) | → | a(c(b(a(b(a(x1)))))) | (8) |
c(a(c(b(x1)))) | → | c(c(b(a(b(a(x1)))))) | (9) |
b(a(c(b(x1)))) | → | b(c(b(a(b(a(x1)))))) | (10) |
d(a(c(b(x1)))) | → | d(c(b(a(b(a(x1)))))) | (11) |
a(b(x1)) | → | a(c(c(x1))) | (12) |
c(b(x1)) | → | c(c(c(x1))) | (13) |
b(b(x1)) | → | b(c(c(x1))) | (14) |
d(b(x1)) | → | d(c(c(x1))) | (15) |
a(d(c(x1))) | → | a(a(c(b(a(x1))))) | (16) |
c(d(c(x1))) | → | c(a(c(b(a(x1))))) | (17) |
b(d(c(x1))) | → | b(a(c(b(a(x1))))) | (18) |
d(d(c(x1))) | → | d(a(c(b(a(x1))))) | (19) |
Root-labeling is applied.
We obtain the labeled TRSaa(aa(x1)) | → | ab(bc(ca(aa(x1)))) | (20) |
aa(ab(x1)) | → | ab(bc(ca(ab(x1)))) | (21) |
aa(ac(x1)) | → | ab(bc(ca(ac(x1)))) | (22) |
aa(ad(x1)) | → | ab(bc(ca(ad(x1)))) | (23) |
aa(ac(cb(ba(x1)))) | → | ac(cb(ba(ab(ba(aa(x1)))))) | (24) |
aa(ac(cb(bb(x1)))) | → | ac(cb(ba(ab(ba(ab(x1)))))) | (25) |
aa(ac(cb(bc(x1)))) | → | ac(cb(ba(ab(ba(ac(x1)))))) | (26) |
aa(ac(cb(bd(x1)))) | → | ac(cb(ba(ab(ba(ad(x1)))))) | (27) |
ca(ac(cb(ba(x1)))) | → | cc(cb(ba(ab(ba(aa(x1)))))) | (28) |
ca(ac(cb(bb(x1)))) | → | cc(cb(ba(ab(ba(ab(x1)))))) | (29) |
ca(ac(cb(bc(x1)))) | → | cc(cb(ba(ab(ba(ac(x1)))))) | (30) |
ca(ac(cb(bd(x1)))) | → | cc(cb(ba(ab(ba(ad(x1)))))) | (31) |
ba(ac(cb(ba(x1)))) | → | bc(cb(ba(ab(ba(aa(x1)))))) | (32) |
ba(ac(cb(bb(x1)))) | → | bc(cb(ba(ab(ba(ab(x1)))))) | (33) |
ba(ac(cb(bc(x1)))) | → | bc(cb(ba(ab(ba(ac(x1)))))) | (34) |
ba(ac(cb(bd(x1)))) | → | bc(cb(ba(ab(ba(ad(x1)))))) | (35) |
da(ac(cb(ba(x1)))) | → | dc(cb(ba(ab(ba(aa(x1)))))) | (36) |
da(ac(cb(bb(x1)))) | → | dc(cb(ba(ab(ba(ab(x1)))))) | (37) |
da(ac(cb(bc(x1)))) | → | dc(cb(ba(ab(ba(ac(x1)))))) | (38) |
da(ac(cb(bd(x1)))) | → | dc(cb(ba(ab(ba(ad(x1)))))) | (39) |
ab(ba(x1)) | → | ac(cc(ca(x1))) | (40) |
ab(bb(x1)) | → | ac(cc(cb(x1))) | (41) |
ab(bc(x1)) | → | ac(cc(cc(x1))) | (42) |
ab(bd(x1)) | → | ac(cc(cd(x1))) | (43) |
cb(ba(x1)) | → | cc(cc(ca(x1))) | (44) |
cb(bb(x1)) | → | cc(cc(cb(x1))) | (45) |
cb(bc(x1)) | → | cc(cc(cc(x1))) | (46) |
cb(bd(x1)) | → | cc(cc(cd(x1))) | (47) |
bb(ba(x1)) | → | bc(cc(ca(x1))) | (48) |
bb(bb(x1)) | → | bc(cc(cb(x1))) | (49) |
bb(bc(x1)) | → | bc(cc(cc(x1))) | (50) |
bb(bd(x1)) | → | bc(cc(cd(x1))) | (51) |
db(ba(x1)) | → | dc(cc(ca(x1))) | (52) |
db(bb(x1)) | → | dc(cc(cb(x1))) | (53) |
db(bc(x1)) | → | dc(cc(cc(x1))) | (54) |
db(bd(x1)) | → | dc(cc(cd(x1))) | (55) |
ad(dc(ca(x1))) | → | aa(ac(cb(ba(aa(x1))))) | (56) |
ad(dc(cb(x1))) | → | aa(ac(cb(ba(ab(x1))))) | (57) |
ad(dc(cc(x1))) | → | aa(ac(cb(ba(ac(x1))))) | (58) |
ad(dc(cd(x1))) | → | aa(ac(cb(ba(ad(x1))))) | (59) |
cd(dc(ca(x1))) | → | ca(ac(cb(ba(aa(x1))))) | (60) |
cd(dc(cb(x1))) | → | ca(ac(cb(ba(ab(x1))))) | (61) |
cd(dc(cc(x1))) | → | ca(ac(cb(ba(ac(x1))))) | (62) |
cd(dc(cd(x1))) | → | ca(ac(cb(ba(ad(x1))))) | (63) |
bd(dc(ca(x1))) | → | ba(ac(cb(ba(aa(x1))))) | (64) |
bd(dc(cb(x1))) | → | ba(ac(cb(ba(ab(x1))))) | (65) |
bd(dc(cc(x1))) | → | ba(ac(cb(ba(ac(x1))))) | (66) |
bd(dc(cd(x1))) | → | ba(ac(cb(ba(ad(x1))))) | (67) |
dd(dc(ca(x1))) | → | da(ac(cb(ba(aa(x1))))) | (68) |
dd(dc(cb(x1))) | → | da(ac(cb(ba(ab(x1))))) | (69) |
dd(dc(cc(x1))) | → | da(ac(cb(ba(ac(x1))))) | (70) |
dd(dc(cd(x1))) | → | da(ac(cb(ba(ad(x1))))) | (71) |
[aa(x1)] | = | 1 · x1 |
[ab(x1)] | = | 1 · x1 |
[bc(x1)] | = | 1 · x1 |
[ca(x1)] | = | 1 · x1 |
[ac(x1)] | = | 1 · x1 |
[ad(x1)] | = | 1 · x1 + 3 |
[cb(x1)] | = | 1 · x1 |
[ba(x1)] | = | 1 · x1 |
[bb(x1)] | = | 1 · x1 |
[bd(x1)] | = | 1 · x1 + 3 |
[cc(x1)] | = | 1 · x1 |
[da(x1)] | = | 1 · x1 + 1 |
[dc(x1)] | = | 1 · x1 |
[cd(x1)] | = | 1 · x1 + 2 |
[db(x1)] | = | 1 · x1 + 1 |
[dd(x1)] | = | 1 · x1 + 3 |
da(ac(cb(ba(x1)))) | → | dc(cb(ba(ab(ba(aa(x1)))))) | (36) |
da(ac(cb(bb(x1)))) | → | dc(cb(ba(ab(ba(ab(x1)))))) | (37) |
da(ac(cb(bc(x1)))) | → | dc(cb(ba(ab(ba(ac(x1)))))) | (38) |
da(ac(cb(bd(x1)))) | → | dc(cb(ba(ab(ba(ad(x1)))))) | (39) |
ab(bd(x1)) | → | ac(cc(cd(x1))) | (43) |
cb(bd(x1)) | → | cc(cc(cd(x1))) | (47) |
bb(bd(x1)) | → | bc(cc(cd(x1))) | (51) |
db(ba(x1)) | → | dc(cc(ca(x1))) | (52) |
db(bb(x1)) | → | dc(cc(cb(x1))) | (53) |
db(bc(x1)) | → | dc(cc(cc(x1))) | (54) |
db(bd(x1)) | → | dc(cc(cd(x1))) | (55) |
ad(dc(ca(x1))) | → | aa(ac(cb(ba(aa(x1))))) | (56) |
ad(dc(cb(x1))) | → | aa(ac(cb(ba(ab(x1))))) | (57) |
ad(dc(cc(x1))) | → | aa(ac(cb(ba(ac(x1))))) | (58) |
ad(dc(cd(x1))) | → | aa(ac(cb(ba(ad(x1))))) | (59) |
cd(dc(ca(x1))) | → | ca(ac(cb(ba(aa(x1))))) | (60) |
cd(dc(cb(x1))) | → | ca(ac(cb(ba(ab(x1))))) | (61) |
cd(dc(cc(x1))) | → | ca(ac(cb(ba(ac(x1))))) | (62) |
cd(dc(cd(x1))) | → | ca(ac(cb(ba(ad(x1))))) | (63) |
bd(dc(ca(x1))) | → | ba(ac(cb(ba(aa(x1))))) | (64) |
bd(dc(cb(x1))) | → | ba(ac(cb(ba(ab(x1))))) | (65) |
bd(dc(cc(x1))) | → | ba(ac(cb(ba(ac(x1))))) | (66) |
bd(dc(cd(x1))) | → | ba(ac(cb(ba(ad(x1))))) | (67) |
dd(dc(ca(x1))) | → | da(ac(cb(ba(aa(x1))))) | (68) |
dd(dc(cb(x1))) | → | da(ac(cb(ba(ab(x1))))) | (69) |
dd(dc(cc(x1))) | → | da(ac(cb(ba(ac(x1))))) | (70) |
dd(dc(cd(x1))) | → | da(ac(cb(ba(ad(x1))))) | (71) |
[aa(x1)] | = | 1 · x1 |
[ab(x1)] | = | 1 · x1 |
[bc(x1)] | = | 1 · x1 |
[ca(x1)] | = | 1 · x1 |
[ac(x1)] | = | 1 · x1 |
[ad(x1)] | = | 1 · x1 |
[cb(x1)] | = | 1 · x1 |
[ba(x1)] | = | 1 · x1 |
[bb(x1)] | = | 1 · x1 |
[bd(x1)] | = | 1 · x1 + 1 |
[cc(x1)] | = | 1 · x1 |
aa(ac(cb(bd(x1)))) | → | ac(cb(ba(ab(ba(ad(x1)))))) | (27) |
ca(ac(cb(bd(x1)))) | → | cc(cb(ba(ab(ba(ad(x1)))))) | (31) |
ba(ac(cb(bd(x1)))) | → | bc(cb(ba(ab(ba(ad(x1)))))) | (35) |
[aa(x1)] | = | 1 · x1 |
[ab(x1)] | = | 1 · x1 |
[bc(x1)] | = | 1 · x1 |
[ca(x1)] | = | 1 · x1 |
[ac(x1)] | = | 1 · x1 |
[ad(x1)] | = | 1 · x1 |
[cb(x1)] | = | 1 · x1 + 1 |
[ba(x1)] | = | 1 · x1 |
[bb(x1)] | = | 1 · x1 + 1 |
[cc(x1)] | = | 1 · x1 |
aa(ac(cb(bb(x1)))) | → | ac(cb(ba(ab(ba(ab(x1)))))) | (25) |
ca(ac(cb(bb(x1)))) | → | cc(cb(ba(ab(ba(ab(x1)))))) | (29) |
ba(ac(cb(bb(x1)))) | → | bc(cb(ba(ab(ba(ab(x1)))))) | (33) |
cb(ba(x1)) | → | cc(cc(ca(x1))) | (44) |
cb(bb(x1)) | → | cc(cc(cb(x1))) | (45) |
cb(bc(x1)) | → | cc(cc(cc(x1))) | (46) |
bb(ba(x1)) | → | bc(cc(ca(x1))) | (48) |
bb(bb(x1)) | → | bc(cc(cb(x1))) | (49) |
bb(bc(x1)) | → | bc(cc(cc(x1))) | (50) |
[aa(x1)] | = | 1 · x1 |
[ab(x1)] | = | 1 · x1 |
[bc(x1)] | = | 1 · x1 |
[ca(x1)] | = | 1 · x1 |
[ac(x1)] | = | 1 · x1 |
[ad(x1)] | = | 1 · x1 |
[cb(x1)] | = | 1 · x1 |
[ba(x1)] | = | 1 · x1 |
[cc(x1)] | = | 1 · x1 |
[bb(x1)] | = | 1 · x1 + 1 |
ab(bb(x1)) | → | ac(cc(cb(x1))) | (41) |
aa#(aa(x1)) | → | ab#(bc(ca(aa(x1)))) | (72) |
aa#(aa(x1)) | → | ca#(aa(x1)) | (73) |
aa#(ab(x1)) | → | ab#(bc(ca(ab(x1)))) | (74) |
aa#(ab(x1)) | → | ca#(ab(x1)) | (75) |
aa#(ac(x1)) | → | ab#(bc(ca(ac(x1)))) | (76) |
aa#(ac(x1)) | → | ca#(ac(x1)) | (77) |
aa#(ad(x1)) | → | ab#(bc(ca(ad(x1)))) | (78) |
aa#(ad(x1)) | → | ca#(ad(x1)) | (79) |
aa#(ac(cb(ba(x1)))) | → | ba#(ab(ba(aa(x1)))) | (80) |
aa#(ac(cb(ba(x1)))) | → | ab#(ba(aa(x1))) | (81) |
aa#(ac(cb(ba(x1)))) | → | ba#(aa(x1)) | (82) |
aa#(ac(cb(ba(x1)))) | → | aa#(x1) | (83) |
aa#(ac(cb(bc(x1)))) | → | ba#(ab(ba(ac(x1)))) | (84) |
aa#(ac(cb(bc(x1)))) | → | ab#(ba(ac(x1))) | (85) |
aa#(ac(cb(bc(x1)))) | → | ba#(ac(x1)) | (86) |
ca#(ac(cb(ba(x1)))) | → | ba#(ab(ba(aa(x1)))) | (87) |
ca#(ac(cb(ba(x1)))) | → | ab#(ba(aa(x1))) | (88) |
ca#(ac(cb(ba(x1)))) | → | ba#(aa(x1)) | (89) |
ca#(ac(cb(ba(x1)))) | → | aa#(x1) | (90) |
ca#(ac(cb(bc(x1)))) | → | ba#(ab(ba(ac(x1)))) | (91) |
ca#(ac(cb(bc(x1)))) | → | ab#(ba(ac(x1))) | (92) |
ca#(ac(cb(bc(x1)))) | → | ba#(ac(x1)) | (93) |
ba#(ac(cb(ba(x1)))) | → | ba#(ab(ba(aa(x1)))) | (94) |
ba#(ac(cb(ba(x1)))) | → | ab#(ba(aa(x1))) | (95) |
ba#(ac(cb(ba(x1)))) | → | ba#(aa(x1)) | (96) |
ba#(ac(cb(ba(x1)))) | → | aa#(x1) | (97) |
ba#(ac(cb(bc(x1)))) | → | ba#(ab(ba(ac(x1)))) | (98) |
ba#(ac(cb(bc(x1)))) | → | ab#(ba(ac(x1))) | (99) |
ba#(ac(cb(bc(x1)))) | → | ba#(ac(x1)) | (100) |
ab#(ba(x1)) | → | ca#(x1) | (101) |
The dependency pairs are split into 1 component.
aa#(aa(x1)) | → | ca#(aa(x1)) | (73) |
ca#(ac(cb(ba(x1)))) | → | ba#(ab(ba(aa(x1)))) | (87) |
ba#(ac(cb(ba(x1)))) | → | ba#(ab(ba(aa(x1)))) | (94) |
ba#(ac(cb(ba(x1)))) | → | ab#(ba(aa(x1))) | (95) |
ab#(ba(x1)) | → | ca#(x1) | (101) |
ca#(ac(cb(ba(x1)))) | → | ab#(ba(aa(x1))) | (88) |
ca#(ac(cb(ba(x1)))) | → | ba#(aa(x1)) | (89) |
ba#(ac(cb(ba(x1)))) | → | ba#(aa(x1)) | (96) |
ba#(ac(cb(ba(x1)))) | → | aa#(x1) | (97) |
aa#(ab(x1)) | → | ca#(ab(x1)) | (75) |
ca#(ac(cb(ba(x1)))) | → | aa#(x1) | (90) |
aa#(ac(x1)) | → | ca#(ac(x1)) | (77) |
ca#(ac(cb(bc(x1)))) | → | ba#(ab(ba(ac(x1)))) | (91) |
ba#(ac(cb(bc(x1)))) | → | ba#(ab(ba(ac(x1)))) | (98) |
ba#(ac(cb(bc(x1)))) | → | ab#(ba(ac(x1))) | (99) |
ba#(ac(cb(bc(x1)))) | → | ba#(ac(x1)) | (100) |
ca#(ac(cb(bc(x1)))) | → | ab#(ba(ac(x1))) | (92) |
ca#(ac(cb(bc(x1)))) | → | ba#(ac(x1)) | (93) |
aa#(ac(cb(ba(x1)))) | → | ba#(ab(ba(aa(x1)))) | (80) |
aa#(ac(cb(ba(x1)))) | → | ab#(ba(aa(x1))) | (81) |
aa#(ac(cb(ba(x1)))) | → | ba#(aa(x1)) | (82) |
aa#(ac(cb(ba(x1)))) | → | aa#(x1) | (83) |
aa#(ac(cb(bc(x1)))) | → | ba#(ab(ba(ac(x1)))) | (84) |
aa#(ac(cb(bc(x1)))) | → | ab#(ba(ac(x1))) | (85) |
aa#(ac(cb(bc(x1)))) | → | ba#(ac(x1)) | (86) |
[aa#(x1)] | = | 1 · x1 |
[aa(x1)] | = | 1 · x1 |
[ca#(x1)] | = | 1 · x1 |
[ac(x1)] | = | 1 · x1 |
[cb(x1)] | = | 1 + 1 · x1 |
[ba(x1)] | = | 1 · x1 |
[ba#(x1)] | = | 1 · x1 |
[ab(x1)] | = | 0 |
[ab#(x1)] | = | 1 · x1 |
[bc(x1)] | = | 1 · x1 |
[ca(x1)] | = | 0 |
[ad(x1)] | = | 1 · x1 |
[cc(x1)] | = | 0 |
aa(aa(x1)) | → | ab(bc(ca(aa(x1)))) | (20) |
aa(ab(x1)) | → | ab(bc(ca(ab(x1)))) | (21) |
aa(ac(x1)) | → | ab(bc(ca(ac(x1)))) | (22) |
aa(ad(x1)) | → | ab(bc(ca(ad(x1)))) | (23) |
aa(ac(cb(ba(x1)))) | → | ac(cb(ba(ab(ba(aa(x1)))))) | (24) |
aa(ac(cb(bc(x1)))) | → | ac(cb(ba(ab(ba(ac(x1)))))) | (26) |
ba(ac(cb(ba(x1)))) | → | bc(cb(ba(ab(ba(aa(x1)))))) | (32) |
ba(ac(cb(bc(x1)))) | → | bc(cb(ba(ab(ba(ac(x1)))))) | (34) |
ab(ba(x1)) | → | ac(cc(ca(x1))) | (40) |
ab(bc(x1)) | → | ac(cc(cc(x1))) | (42) |
ca#(ac(cb(ba(x1)))) | → | ba#(ab(ba(aa(x1)))) | (87) |
ba#(ac(cb(ba(x1)))) | → | ba#(ab(ba(aa(x1)))) | (94) |
ba#(ac(cb(ba(x1)))) | → | ab#(ba(aa(x1))) | (95) |
ca#(ac(cb(ba(x1)))) | → | ab#(ba(aa(x1))) | (88) |
ca#(ac(cb(ba(x1)))) | → | ba#(aa(x1)) | (89) |
ba#(ac(cb(ba(x1)))) | → | ba#(aa(x1)) | (96) |
ba#(ac(cb(ba(x1)))) | → | aa#(x1) | (97) |
ca#(ac(cb(ba(x1)))) | → | aa#(x1) | (90) |
ca#(ac(cb(bc(x1)))) | → | ba#(ab(ba(ac(x1)))) | (91) |
ba#(ac(cb(bc(x1)))) | → | ba#(ab(ba(ac(x1)))) | (98) |
ba#(ac(cb(bc(x1)))) | → | ab#(ba(ac(x1))) | (99) |
ba#(ac(cb(bc(x1)))) | → | ba#(ac(x1)) | (100) |
ca#(ac(cb(bc(x1)))) | → | ab#(ba(ac(x1))) | (92) |
ca#(ac(cb(bc(x1)))) | → | ba#(ac(x1)) | (93) |
aa#(ac(cb(ba(x1)))) | → | ba#(ab(ba(aa(x1)))) | (80) |
aa#(ac(cb(ba(x1)))) | → | ab#(ba(aa(x1))) | (81) |
aa#(ac(cb(ba(x1)))) | → | ba#(aa(x1)) | (82) |
aa#(ac(cb(ba(x1)))) | → | aa#(x1) | (83) |
aa#(ac(cb(bc(x1)))) | → | ba#(ab(ba(ac(x1)))) | (84) |
aa#(ac(cb(bc(x1)))) | → | ab#(ba(ac(x1))) | (85) |
aa#(ac(cb(bc(x1)))) | → | ba#(ac(x1)) | (86) |
The dependency pairs are split into 0 components.