The rewrite relation of the following TRS is considered.
| b(c(b(c(a(a(x1)))))) | → | a(a(a(b(c(b(c(b(c(x1))))))))) | (1) |
{b(☐), c(☐), a(☐)}
We obtain the transformed TRS| b(b(c(b(c(a(a(x1))))))) | → | b(a(a(a(b(c(b(c(b(c(x1)))))))))) | (2) |
| c(b(c(b(c(a(a(x1))))))) | → | c(a(a(a(b(c(b(c(b(c(x1)))))))))) | (3) |
| a(b(c(b(c(a(a(x1))))))) | → | a(a(a(a(b(c(b(c(b(c(x1)))))))))) | (4) |
Root-labeling is applied.
We obtain the labeled TRS| bb(bc(cb(bc(ca(aa(ab(x1))))))) | → | ba(aa(aa(ab(bc(cb(bc(cb(bc(cb(x1)))))))))) | (5) |
| bb(bc(cb(bc(ca(aa(ac(x1))))))) | → | ba(aa(aa(ab(bc(cb(bc(cb(bc(cc(x1)))))))))) | (6) |
| bb(bc(cb(bc(ca(aa(aa(x1))))))) | → | ba(aa(aa(ab(bc(cb(bc(cb(bc(ca(x1)))))))))) | (7) |
| cb(bc(cb(bc(ca(aa(ab(x1))))))) | → | ca(aa(aa(ab(bc(cb(bc(cb(bc(cb(x1)))))))))) | (8) |
| cb(bc(cb(bc(ca(aa(ac(x1))))))) | → | ca(aa(aa(ab(bc(cb(bc(cb(bc(cc(x1)))))))))) | (9) |
| cb(bc(cb(bc(ca(aa(aa(x1))))))) | → | ca(aa(aa(ab(bc(cb(bc(cb(bc(ca(x1)))))))))) | (10) |
| ab(bc(cb(bc(ca(aa(ab(x1))))))) | → | aa(aa(aa(ab(bc(cb(bc(cb(bc(cb(x1)))))))))) | (11) |
| ab(bc(cb(bc(ca(aa(ac(x1))))))) | → | aa(aa(aa(ab(bc(cb(bc(cb(bc(cc(x1)))))))))) | (12) |
| ab(bc(cb(bc(ca(aa(aa(x1))))))) | → | aa(aa(aa(ab(bc(cb(bc(cb(bc(ca(x1)))))))))) | (13) |
| [bb(x1)] | = | 1 · x1 + 1 |
| [bc(x1)] | = | 1 · x1 |
| [cb(x1)] | = | 1 · x1 |
| [ca(x1)] | = | 1 · x1 |
| [aa(x1)] | = | 1 · x1 |
| [ab(x1)] | = | 1 · x1 |
| [ba(x1)] | = | 1 · x1 |
| [ac(x1)] | = | 1 · x1 + 1 |
| [cc(x1)] | = | 1 · x1 |
| bb(bc(cb(bc(ca(aa(ab(x1))))))) | → | ba(aa(aa(ab(bc(cb(bc(cb(bc(cb(x1)))))))))) | (5) |
| bb(bc(cb(bc(ca(aa(ac(x1))))))) | → | ba(aa(aa(ab(bc(cb(bc(cb(bc(cc(x1)))))))))) | (6) |
| bb(bc(cb(bc(ca(aa(aa(x1))))))) | → | ba(aa(aa(ab(bc(cb(bc(cb(bc(ca(x1)))))))))) | (7) |
| cb(bc(cb(bc(ca(aa(ac(x1))))))) | → | ca(aa(aa(ab(bc(cb(bc(cb(bc(cc(x1)))))))))) | (9) |
| ab(bc(cb(bc(ca(aa(ac(x1))))))) | → | aa(aa(aa(ab(bc(cb(bc(cb(bc(cc(x1)))))))))) | (12) |
| cb#(bc(cb(bc(ca(aa(ab(x1))))))) | → | ab#(bc(cb(bc(cb(bc(cb(x1))))))) | (14) |
| cb#(bc(cb(bc(ca(aa(ab(x1))))))) | → | cb#(bc(cb(bc(cb(x1))))) | (15) |
| cb#(bc(cb(bc(ca(aa(ab(x1))))))) | → | cb#(bc(cb(x1))) | (16) |
| cb#(bc(cb(bc(ca(aa(ab(x1))))))) | → | cb#(x1) | (17) |
| cb#(bc(cb(bc(ca(aa(aa(x1))))))) | → | ab#(bc(cb(bc(cb(bc(ca(x1))))))) | (18) |
| cb#(bc(cb(bc(ca(aa(aa(x1))))))) | → | cb#(bc(cb(bc(ca(x1))))) | (19) |
| cb#(bc(cb(bc(ca(aa(aa(x1))))))) | → | cb#(bc(ca(x1))) | (20) |
| ab#(bc(cb(bc(ca(aa(ab(x1))))))) | → | ab#(bc(cb(bc(cb(bc(cb(x1))))))) | (21) |
| ab#(bc(cb(bc(ca(aa(ab(x1))))))) | → | cb#(bc(cb(bc(cb(x1))))) | (22) |
| ab#(bc(cb(bc(ca(aa(ab(x1))))))) | → | cb#(bc(cb(x1))) | (23) |
| ab#(bc(cb(bc(ca(aa(ab(x1))))))) | → | cb#(x1) | (24) |
| ab#(bc(cb(bc(ca(aa(aa(x1))))))) | → | ab#(bc(cb(bc(cb(bc(ca(x1))))))) | (25) |
| ab#(bc(cb(bc(ca(aa(aa(x1))))))) | → | cb#(bc(cb(bc(ca(x1))))) | (26) |
| ab#(bc(cb(bc(ca(aa(aa(x1))))))) | → | cb#(bc(ca(x1))) | (27) |
The dependency pairs are split into 1 component.
| ab#(bc(cb(bc(ca(aa(aa(x1))))))) | → | ab#(bc(cb(bc(cb(bc(ca(x1))))))) | (25) |
| ab#(bc(cb(bc(ca(aa(aa(x1))))))) | → | cb#(bc(cb(bc(ca(x1))))) | (26) |
| cb#(bc(cb(bc(ca(aa(ab(x1))))))) | → | ab#(bc(cb(bc(cb(bc(cb(x1))))))) | (14) |
| cb#(bc(cb(bc(ca(aa(ab(x1))))))) | → | cb#(bc(cb(bc(cb(x1))))) | (15) |
| cb#(bc(cb(bc(ca(aa(aa(x1))))))) | → | ab#(bc(cb(bc(cb(bc(ca(x1))))))) | (18) |
| cb#(bc(cb(bc(ca(aa(aa(x1))))))) | → | cb#(bc(cb(bc(ca(x1))))) | (19) |
| cb#(bc(cb(bc(ca(aa(ab(x1))))))) | → | cb#(bc(cb(x1))) | (16) |
| cb#(bc(cb(bc(ca(aa(ab(x1))))))) | → | cb#(x1) | (17) |
| [ab#(x1)] | = |
|
||||||||||||||||||
| [bc(x1)] | = |
|
||||||||||||||||||
| [cb(x1)] | = |
|
||||||||||||||||||
| [ca(x1)] | = |
|
||||||||||||||||||
| [aa(x1)] | = |
|
||||||||||||||||||
| [cb#(x1)] | = |
|
||||||||||||||||||
| [ab(x1)] | = |
|
| cb#(bc(cb(bc(ca(aa(ab(x1))))))) | → | ab#(bc(cb(bc(cb(bc(cb(x1))))))) | (14) |
| [ab#(x1)] | = |
|
||||||||||||||||||
| [bc(x1)] | = |
|
||||||||||||||||||
| [cb(x1)] | = |
|
||||||||||||||||||
| [ca(x1)] | = |
|
||||||||||||||||||
| [aa(x1)] | = |
|
||||||||||||||||||
| [cb#(x1)] | = |
|
||||||||||||||||||
| [ab(x1)] | = |
|
| ab#(bc(cb(bc(ca(aa(aa(x1))))))) | → | ab#(bc(cb(bc(cb(bc(ca(x1))))))) | (25) |
| cb#(bc(cb(bc(ca(aa(aa(x1))))))) | → | ab#(bc(cb(bc(cb(bc(ca(x1))))))) | (18) |
The dependency pairs are split into 1 component.
| cb#(bc(cb(bc(ca(aa(aa(x1))))))) | → | cb#(bc(cb(bc(ca(x1))))) | (19) |
| cb#(bc(cb(bc(ca(aa(ab(x1))))))) | → | cb#(bc(cb(bc(cb(x1))))) | (15) |
| cb#(bc(cb(bc(ca(aa(ab(x1))))))) | → | cb#(bc(cb(x1))) | (16) |
| cb#(bc(cb(bc(ca(aa(ab(x1))))))) | → | cb#(x1) | (17) |
| [cb#(x1)] | = |
|
||||||||||||||||||
| [bc(x1)] | = |
|
||||||||||||||||||
| [cb(x1)] | = |
|
||||||||||||||||||
| [ca(x1)] | = |
|
||||||||||||||||||
| [aa(x1)] | = |
|
||||||||||||||||||
| [ab(x1)] | = |
|
| cb#(bc(cb(bc(ca(aa(ab(x1))))))) | → | cb#(bc(cb(x1))) | (16) |
| [cb#(x1)] | = |
|
||||||||||||||||||
| [bc(x1)] | = |
|
||||||||||||||||||
| [cb(x1)] | = |
|
||||||||||||||||||
| [ca(x1)] | = |
|
||||||||||||||||||
| [aa(x1)] | = |
|
||||||||||||||||||
| [ab(x1)] | = |
|
| cb#(bc(cb(bc(ca(aa(ab(x1))))))) | → | cb#(bc(cb(bc(cb(x1))))) | (15) |
| cb#(bc(cb(bc(ca(aa(ab(x1))))))) | → | cb#(x1) | (17) |
20
Hence, it suffices to show innermost termination in the following.We restrict the rewrite rules to the following usable rules of the DP problem.
There are no rules.
We restrict the innermost strategy to the following left hand sides.
| cb(bc(cb(bc(ca(aa(ab(x0))))))) |
| cb(bc(cb(bc(ca(aa(aa(x0))))))) |
| [cb#(x1)] | = | 1 · x1 |
| [bc(x1)] | = | 1 · x1 |
| [cb(x1)] | = | 1 · x1 |
| [ca(x1)] | = | 1 · x1 |
| [aa(x1)] | = | 1 + 1 · x1 |
| cb#(bc(cb(bc(ca(aa(aa(x1))))))) | → | cb#(bc(cb(bc(ca(x1))))) | (19) |
There are no pairs anymore.