The rewrite relation of the following TRS is considered.
b(c(b(c(a(a(x1)))))) | → | a(a(a(b(c(b(c(b(c(x1))))))))) | (1) |
{b(☐), c(☐), a(☐)}
We obtain the transformed TRSb(b(c(b(c(a(a(x1))))))) | → | b(a(a(a(b(c(b(c(b(c(x1)))))))))) | (2) |
c(b(c(b(c(a(a(x1))))))) | → | c(a(a(a(b(c(b(c(b(c(x1)))))))))) | (3) |
a(b(c(b(c(a(a(x1))))))) | → | a(a(a(a(b(c(b(c(b(c(x1)))))))))) | (4) |
Root-labeling is applied.
We obtain the labeled TRSbb(bc(cb(bc(ca(aa(ab(x1))))))) | → | ba(aa(aa(ab(bc(cb(bc(cb(bc(cb(x1)))))))))) | (5) |
bb(bc(cb(bc(ca(aa(ac(x1))))))) | → | ba(aa(aa(ab(bc(cb(bc(cb(bc(cc(x1)))))))))) | (6) |
bb(bc(cb(bc(ca(aa(aa(x1))))))) | → | ba(aa(aa(ab(bc(cb(bc(cb(bc(ca(x1)))))))))) | (7) |
cb(bc(cb(bc(ca(aa(ab(x1))))))) | → | ca(aa(aa(ab(bc(cb(bc(cb(bc(cb(x1)))))))))) | (8) |
cb(bc(cb(bc(ca(aa(ac(x1))))))) | → | ca(aa(aa(ab(bc(cb(bc(cb(bc(cc(x1)))))))))) | (9) |
cb(bc(cb(bc(ca(aa(aa(x1))))))) | → | ca(aa(aa(ab(bc(cb(bc(cb(bc(ca(x1)))))))))) | (10) |
ab(bc(cb(bc(ca(aa(ab(x1))))))) | → | aa(aa(aa(ab(bc(cb(bc(cb(bc(cb(x1)))))))))) | (11) |
ab(bc(cb(bc(ca(aa(ac(x1))))))) | → | aa(aa(aa(ab(bc(cb(bc(cb(bc(cc(x1)))))))))) | (12) |
ab(bc(cb(bc(ca(aa(aa(x1))))))) | → | aa(aa(aa(ab(bc(cb(bc(cb(bc(ca(x1)))))))))) | (13) |
[bb(x1)] | = | 1 · x1 + 1 |
[bc(x1)] | = | 1 · x1 |
[cb(x1)] | = | 1 · x1 |
[ca(x1)] | = | 1 · x1 |
[aa(x1)] | = | 1 · x1 |
[ab(x1)] | = | 1 · x1 |
[ba(x1)] | = | 1 · x1 |
[ac(x1)] | = | 1 · x1 + 1 |
[cc(x1)] | = | 1 · x1 |
bb(bc(cb(bc(ca(aa(ab(x1))))))) | → | ba(aa(aa(ab(bc(cb(bc(cb(bc(cb(x1)))))))))) | (5) |
bb(bc(cb(bc(ca(aa(ac(x1))))))) | → | ba(aa(aa(ab(bc(cb(bc(cb(bc(cc(x1)))))))))) | (6) |
bb(bc(cb(bc(ca(aa(aa(x1))))))) | → | ba(aa(aa(ab(bc(cb(bc(cb(bc(ca(x1)))))))))) | (7) |
cb(bc(cb(bc(ca(aa(ac(x1))))))) | → | ca(aa(aa(ab(bc(cb(bc(cb(bc(cc(x1)))))))))) | (9) |
ab(bc(cb(bc(ca(aa(ac(x1))))))) | → | aa(aa(aa(ab(bc(cb(bc(cb(bc(cc(x1)))))))))) | (12) |
cb#(bc(cb(bc(ca(aa(ab(x1))))))) | → | ab#(bc(cb(bc(cb(bc(cb(x1))))))) | (14) |
cb#(bc(cb(bc(ca(aa(ab(x1))))))) | → | cb#(bc(cb(bc(cb(x1))))) | (15) |
cb#(bc(cb(bc(ca(aa(ab(x1))))))) | → | cb#(bc(cb(x1))) | (16) |
cb#(bc(cb(bc(ca(aa(ab(x1))))))) | → | cb#(x1) | (17) |
cb#(bc(cb(bc(ca(aa(aa(x1))))))) | → | ab#(bc(cb(bc(cb(bc(ca(x1))))))) | (18) |
cb#(bc(cb(bc(ca(aa(aa(x1))))))) | → | cb#(bc(cb(bc(ca(x1))))) | (19) |
cb#(bc(cb(bc(ca(aa(aa(x1))))))) | → | cb#(bc(ca(x1))) | (20) |
ab#(bc(cb(bc(ca(aa(ab(x1))))))) | → | ab#(bc(cb(bc(cb(bc(cb(x1))))))) | (21) |
ab#(bc(cb(bc(ca(aa(ab(x1))))))) | → | cb#(bc(cb(bc(cb(x1))))) | (22) |
ab#(bc(cb(bc(ca(aa(ab(x1))))))) | → | cb#(bc(cb(x1))) | (23) |
ab#(bc(cb(bc(ca(aa(ab(x1))))))) | → | cb#(x1) | (24) |
ab#(bc(cb(bc(ca(aa(aa(x1))))))) | → | ab#(bc(cb(bc(cb(bc(ca(x1))))))) | (25) |
ab#(bc(cb(bc(ca(aa(aa(x1))))))) | → | cb#(bc(cb(bc(ca(x1))))) | (26) |
ab#(bc(cb(bc(ca(aa(aa(x1))))))) | → | cb#(bc(ca(x1))) | (27) |
The dependency pairs are split into 1 component.
ab#(bc(cb(bc(ca(aa(aa(x1))))))) | → | ab#(bc(cb(bc(cb(bc(ca(x1))))))) | (25) |
ab#(bc(cb(bc(ca(aa(aa(x1))))))) | → | cb#(bc(cb(bc(ca(x1))))) | (26) |
cb#(bc(cb(bc(ca(aa(ab(x1))))))) | → | ab#(bc(cb(bc(cb(bc(cb(x1))))))) | (14) |
cb#(bc(cb(bc(ca(aa(ab(x1))))))) | → | cb#(bc(cb(bc(cb(x1))))) | (15) |
cb#(bc(cb(bc(ca(aa(aa(x1))))))) | → | ab#(bc(cb(bc(cb(bc(ca(x1))))))) | (18) |
cb#(bc(cb(bc(ca(aa(aa(x1))))))) | → | cb#(bc(cb(bc(ca(x1))))) | (19) |
cb#(bc(cb(bc(ca(aa(ab(x1))))))) | → | cb#(bc(cb(x1))) | (16) |
cb#(bc(cb(bc(ca(aa(ab(x1))))))) | → | cb#(x1) | (17) |
[ab#(x1)] | = |
|
||||||||||||||||||
[bc(x1)] | = |
|
||||||||||||||||||
[cb(x1)] | = |
|
||||||||||||||||||
[ca(x1)] | = |
|
||||||||||||||||||
[aa(x1)] | = |
|
||||||||||||||||||
[cb#(x1)] | = |
|
||||||||||||||||||
[ab(x1)] | = |
|
cb#(bc(cb(bc(ca(aa(ab(x1))))))) | → | ab#(bc(cb(bc(cb(bc(cb(x1))))))) | (14) |
[ab#(x1)] | = |
|
||||||||||||||||||
[bc(x1)] | = |
|
||||||||||||||||||
[cb(x1)] | = |
|
||||||||||||||||||
[ca(x1)] | = |
|
||||||||||||||||||
[aa(x1)] | = |
|
||||||||||||||||||
[cb#(x1)] | = |
|
||||||||||||||||||
[ab(x1)] | = |
|
ab#(bc(cb(bc(ca(aa(aa(x1))))))) | → | ab#(bc(cb(bc(cb(bc(ca(x1))))))) | (25) |
cb#(bc(cb(bc(ca(aa(aa(x1))))))) | → | ab#(bc(cb(bc(cb(bc(ca(x1))))))) | (18) |
The dependency pairs are split into 1 component.
cb#(bc(cb(bc(ca(aa(aa(x1))))))) | → | cb#(bc(cb(bc(ca(x1))))) | (19) |
cb#(bc(cb(bc(ca(aa(ab(x1))))))) | → | cb#(bc(cb(bc(cb(x1))))) | (15) |
cb#(bc(cb(bc(ca(aa(ab(x1))))))) | → | cb#(bc(cb(x1))) | (16) |
cb#(bc(cb(bc(ca(aa(ab(x1))))))) | → | cb#(x1) | (17) |
[cb#(x1)] | = |
|
||||||||||||||||||
[bc(x1)] | = |
|
||||||||||||||||||
[cb(x1)] | = |
|
||||||||||||||||||
[ca(x1)] | = |
|
||||||||||||||||||
[aa(x1)] | = |
|
||||||||||||||||||
[ab(x1)] | = |
|
cb#(bc(cb(bc(ca(aa(ab(x1))))))) | → | cb#(bc(cb(x1))) | (16) |
[cb#(x1)] | = |
|
||||||||||||||||||
[bc(x1)] | = |
|
||||||||||||||||||
[cb(x1)] | = |
|
||||||||||||||||||
[ca(x1)] | = |
|
||||||||||||||||||
[aa(x1)] | = |
|
||||||||||||||||||
[ab(x1)] | = |
|
cb#(bc(cb(bc(ca(aa(ab(x1))))))) | → | cb#(bc(cb(bc(cb(x1))))) | (15) |
cb#(bc(cb(bc(ca(aa(ab(x1))))))) | → | cb#(x1) | (17) |
20
Hence, it suffices to show innermost termination in the following.We restrict the rewrite rules to the following usable rules of the DP problem.
There are no rules.
We restrict the innermost strategy to the following left hand sides.
cb(bc(cb(bc(ca(aa(ab(x0))))))) |
cb(bc(cb(bc(ca(aa(aa(x0))))))) |
[cb#(x1)] | = | 1 · x1 |
[bc(x1)] | = | 1 · x1 |
[cb(x1)] | = | 1 · x1 |
[ca(x1)] | = | 1 · x1 |
[aa(x1)] | = | 1 + 1 · x1 |
cb#(bc(cb(bc(ca(aa(aa(x1))))))) | → | cb#(bc(cb(bc(ca(x1))))) | (19) |
There are no pairs anymore.