The rewrite relation of the following TRS is considered.
| a(l(x1)) | → | l(a(x1)) | (1) |
| r(a(a(x1))) | → | a(a(r(x1))) | (2) |
| b(l(x1)) | → | b(a(r(x1))) | (3) |
| r(b(x1)) | → | l(b(x1)) | (4) |
| l(a(x1)) | → | a(l(x1)) | (5) |
| a(a(r(x1))) | → | r(a(a(x1))) | (6) |
| l(b(x1)) | → | r(a(b(x1))) | (7) |
| b(r(x1)) | → | b(l(x1)) | (8) |
| l#(a(x1)) | → | a#(l(x1)) | (9) |
| l#(a(x1)) | → | l#(x1) | (10) |
| a#(a(r(x1))) | → | a#(a(x1)) | (11) |
| a#(a(r(x1))) | → | a#(x1) | (12) |
| l#(b(x1)) | → | a#(b(x1)) | (13) |
| b#(r(x1)) | → | b#(l(x1)) | (14) |
| b#(r(x1)) | → | l#(x1) | (15) |
The dependency pairs are split into 3 components.
| b#(r(x1)) | → | b#(l(x1)) | (14) |
| [b#(x1)] | = |
|
||||||||||||||||||
| [r(x1)] | = |
|
||||||||||||||||||
| [l(x1)] | = |
|
||||||||||||||||||
| [a(x1)] | = |
|
||||||||||||||||||
| [b(x1)] | = |
|
| b#(r(x1)) | → | b#(l(x1)) | (14) |
There are no pairs anymore.
| l#(a(x1)) | → | l#(x1) | (10) |
| [a(x1)] | = | 1 · x1 |
| [l#(x1)] | = | 1 · x1 |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| l#(a(x1)) | → | l#(x1) | (10) |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| a#(a(r(x1))) | → | a#(x1) | (12) |
| a#(a(r(x1))) | → | a#(a(x1)) | (11) |
| [a(x1)] | = | 1 · x1 |
| [r(x1)] | = | 1 · x1 |
| [a#(x1)] | = | 1 · x1 |
| a(a(r(x1))) | → | r(a(a(x1))) | (6) |
20
Hence, it suffices to show innermost termination in the following.| [a#(x1)] | = | 1 · x1 |
| [a(x1)] | = | 1 + 1 · x1 |
| [r(x1)] | = | 1 + 1 · x1 |
| a#(a(r(x1))) | → | a#(x1) | (12) |
| a#(a(r(x1))) | → | a#(a(x1)) | (11) |
There are no pairs anymore.