The rewrite relation of the following TRS is considered.
| a(a(a(b(b(b(x1)))))) | → | b(b(b(b(a(a(a(a(x1)))))))) | (1) |
| b(b(b(a(a(a(x1)))))) | → | a(a(a(a(b(b(b(b(x1)))))))) | (2) |
{b(☐), a(☐)}
We obtain the transformed TRS| b(b(b(b(a(a(a(x1))))))) | → | b(a(a(a(a(b(b(b(b(x1))))))))) | (3) |
| a(b(b(b(a(a(a(x1))))))) | → | a(a(a(a(a(b(b(b(b(x1))))))))) | (4) |
Root-labeling is applied.
We obtain the labeled TRS| bb(bb(bb(ba(aa(aa(ab(x1))))))) | → | ba(aa(aa(aa(ab(bb(bb(bb(bb(x1))))))))) | (5) |
| bb(bb(bb(ba(aa(aa(aa(x1))))))) | → | ba(aa(aa(aa(ab(bb(bb(bb(ba(x1))))))))) | (6) |
| ab(bb(bb(ba(aa(aa(ab(x1))))))) | → | aa(aa(aa(aa(ab(bb(bb(bb(bb(x1))))))))) | (7) |
| ab(bb(bb(ba(aa(aa(aa(x1))))))) | → | aa(aa(aa(aa(ab(bb(bb(bb(ba(x1))))))))) | (8) |
| bb#(bb(bb(ba(aa(aa(ab(x1))))))) | → | ab#(bb(bb(bb(bb(x1))))) | (9) |
| bb#(bb(bb(ba(aa(aa(ab(x1))))))) | → | bb#(bb(bb(bb(x1)))) | (10) |
| bb#(bb(bb(ba(aa(aa(ab(x1))))))) | → | bb#(bb(bb(x1))) | (11) |
| bb#(bb(bb(ba(aa(aa(ab(x1))))))) | → | bb#(bb(x1)) | (12) |
| bb#(bb(bb(ba(aa(aa(ab(x1))))))) | → | bb#(x1) | (13) |
| bb#(bb(bb(ba(aa(aa(aa(x1))))))) | → | ab#(bb(bb(bb(ba(x1))))) | (14) |
| bb#(bb(bb(ba(aa(aa(aa(x1))))))) | → | bb#(bb(bb(ba(x1)))) | (15) |
| bb#(bb(bb(ba(aa(aa(aa(x1))))))) | → | bb#(bb(ba(x1))) | (16) |
| bb#(bb(bb(ba(aa(aa(aa(x1))))))) | → | bb#(ba(x1)) | (17) |
| ab#(bb(bb(ba(aa(aa(ab(x1))))))) | → | ab#(bb(bb(bb(bb(x1))))) | (18) |
| ab#(bb(bb(ba(aa(aa(ab(x1))))))) | → | bb#(bb(bb(bb(x1)))) | (19) |
| ab#(bb(bb(ba(aa(aa(ab(x1))))))) | → | bb#(bb(bb(x1))) | (20) |
| ab#(bb(bb(ba(aa(aa(ab(x1))))))) | → | bb#(bb(x1)) | (21) |
| ab#(bb(bb(ba(aa(aa(ab(x1))))))) | → | bb#(x1) | (22) |
| ab#(bb(bb(ba(aa(aa(aa(x1))))))) | → | ab#(bb(bb(bb(ba(x1))))) | (23) |
| ab#(bb(bb(ba(aa(aa(aa(x1))))))) | → | bb#(bb(bb(ba(x1)))) | (24) |
| ab#(bb(bb(ba(aa(aa(aa(x1))))))) | → | bb#(bb(ba(x1))) | (25) |
| ab#(bb(bb(ba(aa(aa(aa(x1))))))) | → | bb#(ba(x1)) | (26) |
The dependency pairs are split into 1 component.
| ab#(bb(bb(ba(aa(aa(aa(x1))))))) | → | ab#(bb(bb(bb(ba(x1))))) | (23) |
| ab#(bb(bb(ba(aa(aa(aa(x1))))))) | → | bb#(bb(bb(ba(x1)))) | (24) |
| bb#(bb(bb(ba(aa(aa(ab(x1))))))) | → | ab#(bb(bb(bb(bb(x1))))) | (9) |
| bb#(bb(bb(ba(aa(aa(ab(x1))))))) | → | bb#(bb(bb(bb(x1)))) | (10) |
| bb#(bb(bb(ba(aa(aa(aa(x1))))))) | → | ab#(bb(bb(bb(ba(x1))))) | (14) |
| bb#(bb(bb(ba(aa(aa(aa(x1))))))) | → | bb#(bb(bb(ba(x1)))) | (15) |
| bb#(bb(bb(ba(aa(aa(ab(x1))))))) | → | bb#(bb(bb(x1))) | (11) |
| bb#(bb(bb(ba(aa(aa(ab(x1))))))) | → | bb#(bb(x1)) | (12) |
| bb#(bb(bb(ba(aa(aa(ab(x1))))))) | → | bb#(x1) | (13) |
| [ab#(x1)] | = |
|
||||||||||||||||||
| [bb(x1)] | = |
|
||||||||||||||||||
| [ba(x1)] | = |
|
||||||||||||||||||
| [aa(x1)] | = |
|
||||||||||||||||||
| [bb#(x1)] | = |
|
||||||||||||||||||
| [ab(x1)] | = |
|
| ab#(bb(bb(ba(aa(aa(aa(x1))))))) | → | ab#(bb(bb(bb(ba(x1))))) | (23) |
| bb#(bb(bb(ba(aa(aa(aa(x1))))))) | → | ab#(bb(bb(bb(ba(x1))))) | (14) |
| [ab#(x1)] | = |
|
||||||||||||||||||
| [bb(x1)] | = |
|
||||||||||||||||||
| [ba(x1)] | = |
|
||||||||||||||||||
| [aa(x1)] | = |
|
||||||||||||||||||
| [bb#(x1)] | = |
|
||||||||||||||||||
| [ab(x1)] | = |
|
| ab#(bb(bb(ba(aa(aa(aa(x1))))))) | → | bb#(bb(bb(ba(x1)))) | (24) |
The dependency pairs are split into 1 component.
| bb#(bb(bb(ba(aa(aa(ab(x1))))))) | → | bb#(bb(bb(bb(x1)))) | (10) |
| bb#(bb(bb(ba(aa(aa(aa(x1))))))) | → | bb#(bb(bb(ba(x1)))) | (15) |
| bb#(bb(bb(ba(aa(aa(ab(x1))))))) | → | bb#(bb(bb(x1))) | (11) |
| bb#(bb(bb(ba(aa(aa(ab(x1))))))) | → | bb#(bb(x1)) | (12) |
| bb#(bb(bb(ba(aa(aa(ab(x1))))))) | → | bb#(x1) | (13) |
| [bb#(x1)] | = |
|
||||||||||||||||||
| [bb(x1)] | = |
|
||||||||||||||||||
| [ba(x1)] | = |
|
||||||||||||||||||
| [aa(x1)] | = |
|
||||||||||||||||||
| [ab(x1)] | = |
|
| bb#(bb(bb(ba(aa(aa(ab(x1))))))) | → | bb#(bb(bb(bb(x1)))) | (10) |
| bb#(bb(bb(ba(aa(aa(ab(x1))))))) | → | bb#(bb(bb(x1))) | (11) |
| bb#(bb(bb(ba(aa(aa(ab(x1))))))) | → | bb#(bb(x1)) | (12) |
| bb#(bb(bb(ba(aa(aa(ab(x1))))))) | → | bb#(x1) | (13) |
20
Hence, it suffices to show innermost termination in the following.We restrict the rewrite rules to the following usable rules of the DP problem.
There are no rules.
We restrict the innermost strategy to the following left hand sides.
| bb(bb(bb(ba(aa(aa(ab(x0))))))) |
| bb(bb(bb(ba(aa(aa(aa(x0))))))) |
| [bb#(x1)] | = | x1 |
| [bb(x1)] | = | -2 + 2 · x1 |
| [ba(x1)] | = | x1 |
| [aa(x1)] | = | 2 + 2 · x1 |
| bb#(bb(bb(ba(aa(aa(aa(x1))))))) | → | bb#(bb(bb(ba(x1)))) | (15) |
There are no pairs anymore.