The rewrite relation of the following TRS is considered.
| r1(a(x1)) | → | a(a(a(r1(x1)))) | (1) |
| r2(a(x1)) | → | a(a(a(r2(x1)))) | (2) |
| a(l1(x1)) | → | l1(a(a(a(x1)))) | (3) |
| a(a(l2(x1))) | → | l2(a(a(x1))) | (4) |
| r1(b(x1)) | → | l1(b(x1)) | (5) |
| r2(b(x1)) | → | l2(a(b(x1))) | (6) |
| b(l1(x1)) | → | b(r2(x1)) | (7) |
| b(l2(x1)) | → | b(r1(x1)) | (8) |
| a(a(x1)) | → | x1 | (9) |
| r1#(a(x1)) | → | a#(a(a(r1(x1)))) | (10) |
| r1#(a(x1)) | → | a#(a(r1(x1))) | (11) |
| r1#(a(x1)) | → | a#(r1(x1)) | (12) |
| r1#(a(x1)) | → | r1#(x1) | (13) |
| r2#(a(x1)) | → | a#(a(a(r2(x1)))) | (14) |
| r2#(a(x1)) | → | a#(a(r2(x1))) | (15) |
| r2#(a(x1)) | → | a#(r2(x1)) | (16) |
| r2#(a(x1)) | → | r2#(x1) | (17) |
| a#(l1(x1)) | → | a#(a(a(x1))) | (18) |
| a#(l1(x1)) | → | a#(a(x1)) | (19) |
| a#(l1(x1)) | → | a#(x1) | (20) |
| a#(a(l2(x1))) | → | a#(a(x1)) | (21) |
| a#(a(l2(x1))) | → | a#(x1) | (22) |
| r2#(b(x1)) | → | a#(b(x1)) | (23) |
| b#(l1(x1)) | → | b#(r2(x1)) | (24) |
| b#(l1(x1)) | → | r2#(x1) | (25) |
| b#(l2(x1)) | → | b#(r1(x1)) | (26) |
| b#(l2(x1)) | → | r1#(x1) | (27) |
The dependency pairs are split into 4 components.
| b#(l2(x1)) | → | b#(r1(x1)) | (26) |
| b#(l1(x1)) | → | b#(r2(x1)) | (24) |
| [b#(x1)] | = |
|
||||||||||||||||||
| [l2(x1)] | = |
|
||||||||||||||||||
| [r1(x1)] | = |
|
||||||||||||||||||
| [l1(x1)] | = |
|
||||||||||||||||||
| [r2(x1)] | = |
|
||||||||||||||||||
| [a(x1)] | = |
|
||||||||||||||||||
| [b(x1)] | = |
|
| b#(l1(x1)) | → | b#(r2(x1)) | (24) |
| [b#(x1)] | = | 1 · x1 |
| [l2(x1)] | = | 1 |
| [r1(x1)] | = | 0 |
| [a(x1)] | = | 1 · x1 |
| [b(x1)] | = | 1 + 1 · x1 |
| [l1(x1)] | = | 0 |
| [r2(x1)] | = | 1 + 1 · x1 |
| r1(a(x1)) | → | a(a(a(r1(x1)))) | (1) |
| r1(b(x1)) | → | l1(b(x1)) | (5) |
| a(l1(x1)) | → | l1(a(a(a(x1)))) | (3) |
| a(a(l2(x1))) | → | l2(a(a(x1))) | (4) |
| a(a(x1)) | → | x1 | (9) |
| b#(l2(x1)) | → | b#(r1(x1)) | (26) |
There are no pairs anymore.
| r1#(a(x1)) | → | r1#(x1) | (13) |
| [a(x1)] | = | 1 · x1 |
| [r1#(x1)] | = | 1 · x1 |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| r1#(a(x1)) | → | r1#(x1) | (13) |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| r2#(a(x1)) | → | r2#(x1) | (17) |
| [a(x1)] | = | 1 · x1 |
| [r2#(x1)] | = | 1 · x1 |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| r2#(a(x1)) | → | r2#(x1) | (17) |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| a#(l1(x1)) | → | a#(a(x1)) | (19) |
| a#(l1(x1)) | → | a#(a(a(x1))) | (18) |
| a#(l1(x1)) | → | a#(x1) | (20) |
| a#(a(l2(x1))) | → | a#(a(x1)) | (21) |
| a#(a(l2(x1))) | → | a#(x1) | (22) |
| [a(x1)] | = | 1 · x1 |
| [l1(x1)] | = | 1 · x1 |
| [l2(x1)] | = | 1 · x1 |
| [a#(x1)] | = | 1 · x1 |
| a(l1(x1)) | → | l1(a(a(a(x1)))) | (3) |
| a(a(l2(x1))) | → | l2(a(a(x1))) | (4) |
| a(a(x1)) | → | x1 | (9) |
| [a(x1)] | = | 1 · x1 |
| [l1(x1)] | = | 3 + 2 · x1 |
| [l2(x1)] | = | 2 + 2 · x1 |
| [a#(x1)] | = | 1 · x1 |
| a#(l1(x1)) | → | a#(a(x1)) | (19) |
| a#(l1(x1)) | → | a#(a(a(x1))) | (18) |
| a#(l1(x1)) | → | a#(x1) | (20) |
| a#(a(l2(x1))) | → | a#(a(x1)) | (21) |
| a#(a(l2(x1))) | → | a#(x1) | (22) |
There are no pairs anymore.