The rewrite relation of the following TRS is considered.
a(d(x1)) | → | d(b(x1)) | (1) |
a(x1) | → | b(b(b(x1))) | (2) |
b(d(b(x1))) | → | a(c(x1)) | (3) |
c(x1) | → | d(x1) | (4) |
a#(d(x1)) | → | b#(x1) | (5) |
a#(x1) | → | b#(b(b(x1))) | (6) |
a#(x1) | → | b#(b(x1)) | (7) |
a#(x1) | → | b#(x1) | (8) |
b#(d(b(x1))) | → | a#(c(x1)) | (9) |
b#(d(b(x1))) | → | c#(x1) | (10) |
The dependency pairs are split into 1 component.
b#(d(b(x1))) | → | a#(c(x1)) | (9) |
a#(d(x1)) | → | b#(x1) | (5) |
a#(x1) | → | b#(b(b(x1))) | (6) |
a#(x1) | → | b#(b(x1)) | (7) |
a#(x1) | → | b#(x1) | (8) |
[a(x1)] | = | 1 · x1 |
[d(x1)] | = | 1 + 1 · x1 |
[b(x1)] | = | 1 · x1 |
[c(x1)] | = | 1 + 1 · x1 |
[b#(x1)] | = | 1 · x1 |
[a#(x1)] | = | 1 · x1 |
a#(d(x1)) | → | b#(x1) | (5) |
[a(x1)] | = | 3 + 1 · x1 |
[d(x1)] | = | 3 · x1 |
[b(x1)] | = | 1 + 1 · x1 |
[c(x1)] | = | 3 · x1 |
[b#(x1)] | = | 1 · x1 |
[a#(x1)] | = | 3 + 1 · x1 |
a#(x1) | → | b#(b(b(x1))) | (6) |
a#(x1) | → | b#(b(x1)) | (7) |
a#(x1) | → | b#(x1) | (8) |
b(d(b(x1))) | → | a(c(x1)) | (3) |
[c(x1)] | = | 1 · x1 |
[d(x1)] | = | 1 · x1 |
[b(x1)] | = | 1 · x1 |
[a#(x1)] | = | 1 · x1 |
[b#(x1)] | = | 1 · x1 |
c(x1) | → | d(x1) | (4) |
20
Hence, it suffices to show innermost termination in the following.[b#(x1)] | = | 4 + 5 · x1 |
[d(x1)] | = | 2 · x1 |
[b(x1)] | = | 5 · x1 |
[a#(x1)] | = | 1 |
[c(x1)] | = | 0 |
b#(d(b(x1))) | → | a#(c(x1)) | (9) |
There are no pairs anymore.