The rewrite relation of the following TRS is considered.
d(a(x1)) | → | b(d(x1)) | (1) |
b(x1) | → | a(a(a(x1))) | (2) |
c(d(c(x1))) | → | a(d(x1)) | (3) |
b(d(d(x1))) | → | c(c(d(d(c(x1))))) | (4) |
a(d(x1)) | → | d(b(x1)) | (5) |
b(x1) | → | a(a(a(x1))) | (2) |
c(d(c(x1))) | → | d(a(x1)) | (6) |
d(d(b(x1))) | → | c(d(d(c(c(x1))))) | (7) |
a#(d(x1)) | → | d#(b(x1)) | (8) |
a#(d(x1)) | → | b#(x1) | (9) |
b#(x1) | → | a#(a(a(x1))) | (10) |
b#(x1) | → | a#(a(x1)) | (11) |
b#(x1) | → | a#(x1) | (12) |
c#(d(c(x1))) | → | d#(a(x1)) | (13) |
c#(d(c(x1))) | → | a#(x1) | (14) |
d#(d(b(x1))) | → | c#(d(d(c(c(x1))))) | (15) |
d#(d(b(x1))) | → | d#(d(c(c(x1)))) | (16) |
d#(d(b(x1))) | → | d#(c(c(x1))) | (17) |
d#(d(b(x1))) | → | c#(c(x1)) | (18) |
d#(d(b(x1))) | → | c#(x1) | (19) |
[d#(x1)] | = | 1 + 2 · x1 |
[a#(x1)] | = | 2 · x1 |
[d(x1)] | = | 1 + x1 |
[c#(x1)] | = | -1 + 2 · x1 |
[b(x1)] | = | x1 |
[a(x1)] | = | x1 |
[c(x1)] | = | x1 |
[b#(x1)] | = | 2 + 2 · x1 |
a#(d(x1)) | → | d#(b(x1)) | (8) |
b#(x1) | → | a#(a(a(x1))) | (10) |
b#(x1) | → | a#(a(x1)) | (11) |
b#(x1) | → | a#(x1) | (12) |
c#(d(c(x1))) | → | a#(x1) | (14) |
d#(d(b(x1))) | → | d#(c(c(x1))) | (17) |
d#(d(b(x1))) | → | c#(c(x1)) | (18) |
d#(d(b(x1))) | → | c#(x1) | (19) |
The dependency pairs are split into 1 component.
d#(d(b(x1))) | → | c#(d(d(c(c(x1))))) | (15) |
c#(d(c(x1))) | → | d#(a(x1)) | (13) |
d#(d(b(x1))) | → | d#(d(c(c(x1)))) | (16) |
[c#(x1)] | = | 1 |
[d#(x1)] | = | -1 + 2 · x1 |
[d(x1)] | = | -1 + x1 |
[b(x1)] | = | 2 |
[c(x1)] | = | -2 |
[a(x1)] | = | 1 |
d#(d(b(x1))) | → | d#(d(c(c(x1)))) | (16) |
[d#(x1)] | = |
|
||||||||||||||||||
[d(x1)] | = |
|
||||||||||||||||||
[b(x1)] | = |
|
||||||||||||||||||
[c#(x1)] | = |
|
||||||||||||||||||
[c(x1)] | = |
|
||||||||||||||||||
[a(x1)] | = |
|
c#(d(c(x1))) | → | d#(a(x1)) | (13) |
[d#(x1)] | = | 1 |
[d(x1)] | = | 0 |
[b(x1)] | = | 1 · x1 |
[c#(x1)] | = | 0 |
[c(x1)] | = | 0 |
[a(x1)] | = | 1 · x1 |
d#(d(b(x1))) | → | c#(d(d(c(c(x1))))) | (15) |
There are no pairs anymore.