The rewrite relation of the following TRS is considered.
a(a(b(b(x1)))) | → | b(b(b(a(a(a(x1)))))) | (1) |
a(c(x1)) | → | c(a(x1)) | (2) |
c(b(x1)) | → | b(c(x1)) | (3) |
a#(a(b(b(x1)))) | → | a#(a(a(x1))) | (4) |
a#(a(b(b(x1)))) | → | a#(a(x1)) | (5) |
a#(a(b(b(x1)))) | → | a#(x1) | (6) |
a#(c(x1)) | → | c#(a(x1)) | (7) |
a#(c(x1)) | → | a#(x1) | (8) |
c#(b(x1)) | → | c#(x1) | (9) |
The dependency pairs are split into 2 components.
a#(a(b(b(x1)))) | → | a#(a(x1)) | (5) |
a#(a(b(b(x1)))) | → | a#(a(a(x1))) | (4) |
a#(a(b(b(x1)))) | → | a#(x1) | (6) |
a#(c(x1)) | → | a#(x1) | (8) |
[a#(x1)] | = | 1 · x1 |
[a(x1)] | = | 1 · x1 |
[b(x1)] | = | 1 · x1 |
[c(x1)] | = | 1 + 1 · x1 |
a#(c(x1)) | → | a#(x1) | (8) |
[a#(x1)] | = |
|
||||||||||||||||||
[a(x1)] | = |
|
||||||||||||||||||
[b(x1)] | = |
|
||||||||||||||||||
[c(x1)] | = |
|
a#(a(b(b(x1)))) | → | a#(a(a(x1))) | (4) |
a#(a(b(b(x1)))) | → | a#(x1) | (6) |
[a#(x1)] | = |
|
||||||||||||||||||||||||||||||||||||
[a(x1)] | = |
|
||||||||||||||||||||||||||||||||||||
[b(x1)] | = |
|
||||||||||||||||||||||||||||||||||||
[c(x1)] | = |
|
a#(a(b(b(x1)))) | → | a#(a(x1)) | (5) |
There are no pairs anymore.
c#(b(x1)) | → | c#(x1) | (9) |
[b(x1)] | = | 1 · x1 |
[c#(x1)] | = | 1 · x1 |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
c#(b(x1)) | → | c#(x1) | (9) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.