The rewrite relation of the following TRS is considered.
| a(l(x1)) | → | l(a(x1)) | (1) |
| a(c(x1)) | → | c(a(x1)) | (2) |
| c(a(r(x1))) | → | r(a(x1)) | (3) |
| l(r(a(x1))) | → | a(l(c(c(r(x1))))) | (4) |
| a#(l(x1)) | → | l#(a(x1)) | (5) |
| a#(l(x1)) | → | a#(x1) | (6) |
| a#(c(x1)) | → | c#(a(x1)) | (7) |
| a#(c(x1)) | → | a#(x1) | (8) |
| c#(a(r(x1))) | → | a#(x1) | (9) |
| l#(r(a(x1))) | → | a#(l(c(c(r(x1))))) | (10) |
| l#(r(a(x1))) | → | l#(c(c(r(x1)))) | (11) |
| l#(r(a(x1))) | → | c#(c(r(x1))) | (12) |
| l#(r(a(x1))) | → | c#(r(x1)) | (13) |
The dependency pairs are split into 1 component.
| l#(r(a(x1))) | → | a#(l(c(c(r(x1))))) | (10) |
| a#(l(x1)) | → | l#(a(x1)) | (5) |
| a#(l(x1)) | → | a#(x1) | (6) |
| a#(c(x1)) | → | c#(a(x1)) | (7) |
| c#(a(r(x1))) | → | a#(x1) | (9) |
| a#(c(x1)) | → | a#(x1) | (8) |
| [l#(x1)] | = | 1 · x1 |
| [r(x1)] | = | 1 + 1 · x1 |
| [a(x1)] | = | 1 · x1 |
| [a#(x1)] | = | 1 · x1 |
| [l(x1)] | = | 1 · x1 |
| [c(x1)] | = | 1 · x1 |
| [c#(x1)] | = | 1 · x1 |
| c#(a(r(x1))) | → | a#(x1) | (9) |
The dependency pairs are split into 1 component.
| a#(l(x1)) | → | l#(a(x1)) | (5) |
| l#(r(a(x1))) | → | a#(l(c(c(r(x1))))) | (10) |
| a#(l(x1)) | → | a#(x1) | (6) |
| a#(c(x1)) | → | a#(x1) | (8) |
| [a#(x1)] | = | 1 · x1 |
| [l(x1)] | = | 1 + 1 · x1 |
| [l#(x1)] | = | 1 |
| [a(x1)] | = | 0 |
| [r(x1)] | = | 0 |
| [c(x1)] | = | 1 · x1 |
| a#(l(x1)) | → | a#(x1) | (6) |
The dependency pairs are split into 2 components.
| a#(c(x1)) | → | a#(x1) | (8) |
| [c(x1)] | = | 1 · x1 |
| [a#(x1)] | = | 1 · x1 |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| a#(c(x1)) | → | a#(x1) | (8) |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| l#(r(a(x1))) | → | a#(l(c(c(r(x1))))) | (10) |
| a#(l(x1)) | → | l#(a(x1)) | (5) |
| [l#(x1)] | = | x1 |
| [l(x1)] | = | 2 + x1 |
| [r(x1)] | = | 2 |
| [a(x1)] | = | 1 + x1 |
| [c(x1)] | = | -1 + x1 |
| [a#(x1)] | = | -2 + 2 · x1 |
| a#(l(x1)) | → | l#(a(x1)) | (5) |
| [r(x1)] | = | 1 · x1 |
| [a(x1)] | = | 1 · x1 |
| [l(x1)] | = | 1 · x1 |
| [c(x1)] | = | 1 · x1 |
| [a#(x1)] | = | 1 · x1 |
| [l#(x1)] | = | 1 · x1 |
| [l#(x1)] | = | 1 + 1 · x1 |
| [r(x1)] | = | 1 + 1 · x1 |
| [a(x1)] | = | 1 + 1 · x1 |
| [a#(x1)] | = | 1 · x1 |
| [l(x1)] | = | 1 + 1 · x1 |
| [c(x1)] | = | 1 |
| l#(r(a(x1))) | → | a#(l(c(c(r(x1))))) | (10) |
There are no pairs anymore.