The rewrite relation of the following TRS is considered.
| a(x1) | → | b(x1) | (1) |
| a(a(x1)) | → | a(b(a(x1))) | (2) |
| a(b(x1)) | → | b(b(b(x1))) | (3) |
| a(a(a(x1))) | → | a(a(b(a(a(x1))))) | (4) |
| a(a(b(x1))) | → | a(b(b(a(b(x1))))) | (5) |
| a(b(a(x1))) | → | b(a(b(b(a(x1))))) | (6) |
| a(b(b(x1))) | → | b(b(b(b(b(x1))))) | (7) |
| b(a(x1)) | → | b(b(b(x1))) | (8) |
| a(b(a(x1))) | → | a(b(b(a(b(x1))))) | (9) |
| b(a(a(x1))) | → | b(a(b(b(a(x1))))) | (10) |
| b(b(a(x1))) | → | b(b(b(b(b(x1))))) | (11) |
{a(☐), b(☐)}
We obtain the transformed TRS| a(a(x1)) | → | a(b(a(x1))) | (2) |
| a(a(a(x1))) | → | a(a(b(a(a(x1))))) | (4) |
| a(a(b(x1))) | → | a(b(b(a(b(x1))))) | (5) |
| b(a(x1)) | → | b(b(b(x1))) | (8) |
| a(b(a(x1))) | → | a(b(b(a(b(x1))))) | (9) |
| b(a(a(x1))) | → | b(a(b(b(a(x1))))) | (10) |
| b(b(a(x1))) | → | b(b(b(b(b(x1))))) | (11) |
| a(a(x1)) | → | a(b(x1)) | (12) |
| b(a(x1)) | → | b(b(x1)) | (13) |
| a(a(b(x1))) | → | a(b(b(b(x1)))) | (14) |
| b(a(b(x1))) | → | b(b(b(b(x1)))) | (15) |
| a(a(b(a(x1)))) | → | a(b(a(b(b(a(x1)))))) | (16) |
| b(a(b(a(x1)))) | → | b(b(a(b(b(a(x1)))))) | (17) |
| a(a(b(b(x1)))) | → | a(b(b(b(b(b(x1)))))) | (18) |
| b(a(b(b(x1)))) | → | b(b(b(b(b(b(x1)))))) | (19) |
Root-labeling is applied.
We obtain the labeled TRS| aa(aa(x1)) | → | ab(ba(aa(x1))) | (20) |
| aa(ab(x1)) | → | ab(ba(ab(x1))) | (21) |
| aa(aa(aa(x1))) | → | aa(ab(ba(aa(aa(x1))))) | (22) |
| aa(aa(ab(x1))) | → | aa(ab(ba(aa(ab(x1))))) | (23) |
| aa(ab(ba(x1))) | → | ab(bb(ba(ab(ba(x1))))) | (24) |
| aa(ab(bb(x1))) | → | ab(bb(ba(ab(bb(x1))))) | (25) |
| ba(aa(x1)) | → | bb(bb(ba(x1))) | (26) |
| ba(ab(x1)) | → | bb(bb(bb(x1))) | (27) |
| ab(ba(aa(x1))) | → | ab(bb(ba(ab(ba(x1))))) | (28) |
| ab(ba(ab(x1))) | → | ab(bb(ba(ab(bb(x1))))) | (29) |
| ba(aa(aa(x1))) | → | ba(ab(bb(ba(aa(x1))))) | (30) |
| ba(aa(ab(x1))) | → | ba(ab(bb(ba(ab(x1))))) | (31) |
| bb(ba(aa(x1))) | → | bb(bb(bb(bb(ba(x1))))) | (32) |
| bb(ba(ab(x1))) | → | bb(bb(bb(bb(bb(x1))))) | (33) |
| aa(aa(x1)) | → | ab(ba(x1)) | (34) |
| aa(ab(x1)) | → | ab(bb(x1)) | (35) |
| ba(aa(x1)) | → | bb(ba(x1)) | (36) |
| ba(ab(x1)) | → | bb(bb(x1)) | (37) |
| aa(ab(ba(x1))) | → | ab(bb(bb(ba(x1)))) | (38) |
| aa(ab(bb(x1))) | → | ab(bb(bb(bb(x1)))) | (39) |
| ba(ab(ba(x1))) | → | bb(bb(bb(ba(x1)))) | (40) |
| ba(ab(bb(x1))) | → | bb(bb(bb(bb(x1)))) | (41) |
| aa(ab(ba(aa(x1)))) | → | ab(ba(ab(bb(ba(aa(x1)))))) | (42) |
| aa(ab(ba(ab(x1)))) | → | ab(ba(ab(bb(ba(ab(x1)))))) | (43) |
| ba(ab(ba(aa(x1)))) | → | bb(ba(ab(bb(ba(aa(x1)))))) | (44) |
| ba(ab(ba(ab(x1)))) | → | bb(ba(ab(bb(ba(ab(x1)))))) | (45) |
| aa(ab(bb(ba(x1)))) | → | ab(bb(bb(bb(bb(ba(x1)))))) | (46) |
| aa(ab(bb(bb(x1)))) | → | ab(bb(bb(bb(bb(bb(x1)))))) | (47) |
| ba(ab(bb(ba(x1)))) | → | bb(bb(bb(bb(bb(ba(x1)))))) | (48) |
| ba(ab(bb(bb(x1)))) | → | bb(bb(bb(bb(bb(bb(x1)))))) | (49) |
| [aa(x1)] | = | 1 · x1 + 1 |
| [ab(x1)] | = | 1 · x1 |
| [ba(x1)] | = | 1 · x1 |
| [bb(x1)] | = | 1 · x1 |
| aa(aa(x1)) | → | ab(ba(aa(x1))) | (20) |
| aa(ab(x1)) | → | ab(ba(ab(x1))) | (21) |
| aa(ab(ba(x1))) | → | ab(bb(ba(ab(ba(x1))))) | (24) |
| aa(ab(bb(x1))) | → | ab(bb(ba(ab(bb(x1))))) | (25) |
| ba(aa(x1)) | → | bb(bb(ba(x1))) | (26) |
| ab(ba(aa(x1))) | → | ab(bb(ba(ab(ba(x1))))) | (28) |
| ba(aa(aa(x1))) | → | ba(ab(bb(ba(aa(x1))))) | (30) |
| ba(aa(ab(x1))) | → | ba(ab(bb(ba(ab(x1))))) | (31) |
| bb(ba(aa(x1))) | → | bb(bb(bb(bb(ba(x1))))) | (32) |
| aa(aa(x1)) | → | ab(ba(x1)) | (34) |
| aa(ab(x1)) | → | ab(bb(x1)) | (35) |
| ba(aa(x1)) | → | bb(ba(x1)) | (36) |
| aa(ab(ba(x1))) | → | ab(bb(bb(ba(x1)))) | (38) |
| aa(ab(bb(x1))) | → | ab(bb(bb(bb(x1)))) | (39) |
| aa(ab(ba(aa(x1)))) | → | ab(ba(ab(bb(ba(aa(x1)))))) | (42) |
| aa(ab(ba(ab(x1)))) | → | ab(ba(ab(bb(ba(ab(x1)))))) | (43) |
| aa(ab(bb(ba(x1)))) | → | ab(bb(bb(bb(bb(ba(x1)))))) | (46) |
| aa(ab(bb(bb(x1)))) | → | ab(bb(bb(bb(bb(bb(x1)))))) | (47) |
| aa#(aa(aa(x1))) | → | aa#(ab(ba(aa(aa(x1))))) | (50) |
| aa#(aa(aa(x1))) | → | ab#(ba(aa(aa(x1)))) | (51) |
| aa#(aa(aa(x1))) | → | ba#(aa(aa(x1))) | (52) |
| aa#(aa(ab(x1))) | → | aa#(ab(ba(aa(ab(x1))))) | (53) |
| aa#(aa(ab(x1))) | → | ab#(ba(aa(ab(x1)))) | (54) |
| aa#(aa(ab(x1))) | → | ba#(aa(ab(x1))) | (55) |
| ba#(ab(x1)) | → | bb#(bb(bb(x1))) | (56) |
| ba#(ab(x1)) | → | bb#(bb(x1)) | (57) |
| ba#(ab(x1)) | → | bb#(x1) | (58) |
| ab#(ba(ab(x1))) | → | ab#(bb(ba(ab(bb(x1))))) | (59) |
| ab#(ba(ab(x1))) | → | bb#(ba(ab(bb(x1)))) | (60) |
| ab#(ba(ab(x1))) | → | ba#(ab(bb(x1))) | (61) |
| ab#(ba(ab(x1))) | → | ab#(bb(x1)) | (62) |
| ab#(ba(ab(x1))) | → | bb#(x1) | (63) |
| bb#(ba(ab(x1))) | → | bb#(bb(bb(bb(bb(x1))))) | (64) |
| bb#(ba(ab(x1))) | → | bb#(bb(bb(bb(x1)))) | (65) |
| bb#(ba(ab(x1))) | → | bb#(bb(bb(x1))) | (66) |
| bb#(ba(ab(x1))) | → | bb#(bb(x1)) | (67) |
| bb#(ba(ab(x1))) | → | bb#(x1) | (68) |
| ba#(ab(ba(x1))) | → | bb#(bb(bb(ba(x1)))) | (69) |
| ba#(ab(ba(x1))) | → | bb#(bb(ba(x1))) | (70) |
| ba#(ab(ba(x1))) | → | bb#(ba(x1)) | (71) |
| ba#(ab(bb(x1))) | → | bb#(bb(bb(bb(x1)))) | (72) |
| ba#(ab(bb(x1))) | → | bb#(bb(bb(x1))) | (73) |
| ba#(ab(bb(x1))) | → | bb#(bb(x1)) | (74) |
| ba#(ab(ba(aa(x1)))) | → | bb#(ba(ab(bb(ba(aa(x1)))))) | (75) |
| ba#(ab(ba(aa(x1)))) | → | ba#(ab(bb(ba(aa(x1))))) | (76) |
| ba#(ab(ba(aa(x1)))) | → | ab#(bb(ba(aa(x1)))) | (77) |
| ba#(ab(ba(aa(x1)))) | → | bb#(ba(aa(x1))) | (78) |
| ba#(ab(ba(ab(x1)))) | → | bb#(ba(ab(bb(ba(ab(x1)))))) | (79) |
| ba#(ab(ba(ab(x1)))) | → | ba#(ab(bb(ba(ab(x1))))) | (80) |
| ba#(ab(ba(ab(x1)))) | → | ab#(bb(ba(ab(x1)))) | (81) |
| ba#(ab(ba(ab(x1)))) | → | bb#(ba(ab(x1))) | (82) |
| ba#(ab(bb(ba(x1)))) | → | bb#(bb(bb(bb(bb(ba(x1)))))) | (83) |
| ba#(ab(bb(ba(x1)))) | → | bb#(bb(bb(bb(ba(x1))))) | (84) |
| ba#(ab(bb(ba(x1)))) | → | bb#(bb(bb(ba(x1)))) | (85) |
| ba#(ab(bb(ba(x1)))) | → | bb#(bb(ba(x1))) | (86) |
| ba#(ab(bb(bb(x1)))) | → | bb#(bb(bb(bb(bb(bb(x1)))))) | (87) |
| ba#(ab(bb(bb(x1)))) | → | bb#(bb(bb(bb(bb(x1))))) | (88) |
| ba#(ab(bb(bb(x1)))) | → | bb#(bb(bb(bb(x1)))) | (89) |
| ba#(ab(bb(bb(x1)))) | → | bb#(bb(bb(x1))) | (90) |
The dependency pairs are split into 2 components.
| aa#(aa(ab(x1))) | → | aa#(ab(ba(aa(ab(x1))))) | (53) |
| aa#(aa(aa(x1))) | → | aa#(ab(ba(aa(aa(x1))))) | (50) |
| [aa#(x1)] | = | 1 · x1 |
| [aa(x1)] | = | 1 + 1 · x1 |
| [ab(x1)] | = | 1 |
| [ba(x1)] | = | 0 |
| [bb(x1)] | = | 0 |
| ab(ba(ab(x1))) | → | ab(bb(ba(ab(bb(x1))))) | (29) |
| aa#(aa(ab(x1))) | → | aa#(ab(ba(aa(ab(x1))))) | (53) |
| aa#(aa(aa(x1))) | → | aa#(ab(ba(aa(aa(x1))))) | (50) |
There are no pairs anymore.
| bb#(ba(ab(x1))) | → | bb#(x1) | (68) |
| [ba(x1)] | = | 1 · x1 |
| [ab(x1)] | = | 1 · x1 |
| [bb#(x1)] | = | 1 · x1 |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| bb#(ba(ab(x1))) | → | bb#(x1) | (68) |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.