The rewrite relation of the following TRS is considered.
| b(a(a(x1))) | → | a(b(c(x1))) | (1) |
| c(a(x1)) | → | a(c(x1)) | (2) |
| b(c(a(x1))) | → | a(b(c(x1))) | (3) |
| c(b(x1)) | → | d(x1) | (4) |
| a(d(x1)) | → | d(a(x1)) | (5) |
| d(x1) | → | b(a(x1)) | (6) |
| L(a(a(x1))) | → | L(a(b(c(x1)))) | (7) |
| c(R(x1)) | → | c(b(R(x1))) | (8) |
| b#(a(a(x1))) | → | a#(b(c(x1))) | (9) |
| b#(a(a(x1))) | → | b#(c(x1)) | (10) |
| b#(a(a(x1))) | → | c#(x1) | (11) |
| c#(a(x1)) | → | a#(c(x1)) | (12) |
| c#(a(x1)) | → | c#(x1) | (13) |
| b#(c(a(x1))) | → | a#(b(c(x1))) | (14) |
| b#(c(a(x1))) | → | b#(c(x1)) | (15) |
| b#(c(a(x1))) | → | c#(x1) | (16) |
| c#(b(x1)) | → | d#(x1) | (17) |
| a#(d(x1)) | → | d#(a(x1)) | (18) |
| a#(d(x1)) | → | a#(x1) | (19) |
| d#(x1) | → | b#(a(x1)) | (20) |
| d#(x1) | → | a#(x1) | (21) |
| L#(a(a(x1))) | → | L#(a(b(c(x1)))) | (22) |
| L#(a(a(x1))) | → | a#(b(c(x1))) | (23) |
| L#(a(a(x1))) | → | b#(c(x1)) | (24) |
| L#(a(a(x1))) | → | c#(x1) | (25) |
| c#(R(x1)) | → | c#(b(R(x1))) | (26) |
| c#(R(x1)) | → | b#(R(x1)) | (27) |
The dependency pairs are split into 2 components.
| L#(a(a(x1))) | → | L#(a(b(c(x1)))) | (22) |
| [c(x1)] | = | 1 · x1 |
| [a(x1)] | = | 1 · x1 |
| [b(x1)] | = | 1 · x1 |
| [d(x1)] | = | 1 · x1 |
| [R(x1)] | = | 1 · x1 |
| [L#(x1)] | = | 1 · x1 |
| c(a(x1)) | → | a(c(x1)) | (2) |
| c(b(x1)) | → | d(x1) | (4) |
| c(R(x1)) | → | c(b(R(x1))) | (8) |
| a(d(x1)) | → | d(a(x1)) | (5) |
| d(x1) | → | b(a(x1)) | (6) |
| b(a(a(x1))) | → | a(b(c(x1))) | (1) |
| b(c(a(x1))) | → | a(b(c(x1))) | (3) |
| [L#(x1)] | = | -2 + x1 |
| [a(x1)] | = | 2 + x1 |
| [b(x1)] | = | -2 + x1 |
| [c(x1)] | = | 2 + x1 |
| [d(x1)] | = | x1 |
| [R(x1)] | = | 0 |
| L#(a(a(x1))) | → | L#(a(b(c(x1)))) | (22) |
There are no pairs anymore.
| a#(d(x1)) | → | d#(a(x1)) | (18) |
| d#(x1) | → | b#(a(x1)) | (20) |
| b#(a(a(x1))) | → | a#(b(c(x1))) | (9) |
| a#(d(x1)) | → | a#(x1) | (19) |
| b#(a(a(x1))) | → | b#(c(x1)) | (10) |
| b#(a(a(x1))) | → | c#(x1) | (11) |
| c#(a(x1)) | → | a#(c(x1)) | (12) |
| c#(a(x1)) | → | c#(x1) | (13) |
| c#(b(x1)) | → | d#(x1) | (17) |
| d#(x1) | → | a#(x1) | (21) |
| c#(R(x1)) | → | c#(b(R(x1))) | (26) |
| b#(c(a(x1))) | → | a#(b(c(x1))) | (14) |
| b#(c(a(x1))) | → | b#(c(x1)) | (15) |
| b#(c(a(x1))) | → | c#(x1) | (16) |
| [c(x1)] | = | 1 · x1 |
| [a(x1)] | = | 1 · x1 |
| [b(x1)] | = | 1 · x1 |
| [d(x1)] | = | 1 · x1 |
| [R(x1)] | = | 1 · x1 |
| [d#(x1)] | = | 1 · x1 |
| [a#(x1)] | = | 1 · x1 |
| [b#(x1)] | = | 1 · x1 |
| [c#(x1)] | = | 1 · x1 |
| c(a(x1)) | → | a(c(x1)) | (2) |
| c(b(x1)) | → | d(x1) | (4) |
| c(R(x1)) | → | c(b(R(x1))) | (8) |
| a(d(x1)) | → | d(a(x1)) | (5) |
| d(x1) | → | b(a(x1)) | (6) |
| b(a(a(x1))) | → | a(b(c(x1))) | (1) |
| b(c(a(x1))) | → | a(b(c(x1))) | (3) |
| [a#(x1)] | = | 1 + 1 · x1 |
| [d(x1)] | = | 1 + 1 · x1 |
| [d#(x1)] | = | 1 + 1 · x1 |
| [a(x1)] | = | 1 + 1 · x1 |
| [b#(x1)] | = | 1 · x1 |
| [b(x1)] | = | 1 · x1 |
| [c(x1)] | = | 1 + 1 · x1 |
| [c#(x1)] | = | 1 + 1 · x1 |
| [R(x1)] | = | 1 + 1 · x1 |
| a#(d(x1)) | → | a#(x1) | (19) |
| b#(a(a(x1))) | → | b#(c(x1)) | (10) |
| b#(a(a(x1))) | → | c#(x1) | (11) |
| c#(a(x1)) | → | c#(x1) | (13) |
| b#(c(a(x1))) | → | b#(c(x1)) | (15) |
| b#(c(a(x1))) | → | c#(x1) | (16) |
The dependency pairs are split into 1 component.
| d#(x1) | → | b#(a(x1)) | (20) |
| b#(a(a(x1))) | → | a#(b(c(x1))) | (9) |
| a#(d(x1)) | → | d#(a(x1)) | (18) |
| d#(x1) | → | a#(x1) | (21) |
| b#(c(a(x1))) | → | a#(b(c(x1))) | (14) |
| [d#(x1)] | = | 1 · x1 |
| [b#(x1)] | = | 0 |
| [a(x1)] | = | 1 · x1 |
| [a#(x1)] | = | 1 · x1 |
| [b(x1)] | = | 0 |
| [c(x1)] | = | 0 |
| [d(x1)] | = | 1 + 1 · x1 |
| [R(x1)] | = | 1 + 1 · x1 |
| d(x1) | → | b(a(x1)) | (6) |
| b(a(a(x1))) | → | a(b(c(x1))) | (1) |
| a(d(x1)) | → | d(a(x1)) | (5) |
| b(c(a(x1))) | → | a(b(c(x1))) | (3) |
| a#(d(x1)) | → | d#(a(x1)) | (18) |
The dependency pairs are split into 0 components.