The rewrite relation of the following TRS is considered.
b(a(a(x1))) | → | a(b(c(x1))) | (1) |
c(a(x1)) | → | a(c(x1)) | (2) |
b(c(a(x1))) | → | a(b(c(x1))) | (3) |
c(b(x1)) | → | d(x1) | (4) |
a(d(x1)) | → | d(a(x1)) | (5) |
d(x1) | → | b(a(x1)) | (6) |
L(a(a(x1))) | → | L(a(b(c(x1)))) | (7) |
c(R(x1)) | → | c(b(R(x1))) | (8) |
b#(a(a(x1))) | → | a#(b(c(x1))) | (9) |
b#(a(a(x1))) | → | b#(c(x1)) | (10) |
b#(a(a(x1))) | → | c#(x1) | (11) |
c#(a(x1)) | → | a#(c(x1)) | (12) |
c#(a(x1)) | → | c#(x1) | (13) |
b#(c(a(x1))) | → | a#(b(c(x1))) | (14) |
b#(c(a(x1))) | → | b#(c(x1)) | (15) |
b#(c(a(x1))) | → | c#(x1) | (16) |
c#(b(x1)) | → | d#(x1) | (17) |
a#(d(x1)) | → | d#(a(x1)) | (18) |
a#(d(x1)) | → | a#(x1) | (19) |
d#(x1) | → | b#(a(x1)) | (20) |
d#(x1) | → | a#(x1) | (21) |
L#(a(a(x1))) | → | L#(a(b(c(x1)))) | (22) |
L#(a(a(x1))) | → | a#(b(c(x1))) | (23) |
L#(a(a(x1))) | → | b#(c(x1)) | (24) |
L#(a(a(x1))) | → | c#(x1) | (25) |
c#(R(x1)) | → | c#(b(R(x1))) | (26) |
c#(R(x1)) | → | b#(R(x1)) | (27) |
The dependency pairs are split into 2 components.
L#(a(a(x1))) | → | L#(a(b(c(x1)))) | (22) |
[c(x1)] | = | 1 · x1 |
[a(x1)] | = | 1 · x1 |
[b(x1)] | = | 1 · x1 |
[d(x1)] | = | 1 · x1 |
[R(x1)] | = | 1 · x1 |
[L#(x1)] | = | 1 · x1 |
c(a(x1)) | → | a(c(x1)) | (2) |
c(b(x1)) | → | d(x1) | (4) |
c(R(x1)) | → | c(b(R(x1))) | (8) |
a(d(x1)) | → | d(a(x1)) | (5) |
d(x1) | → | b(a(x1)) | (6) |
b(a(a(x1))) | → | a(b(c(x1))) | (1) |
b(c(a(x1))) | → | a(b(c(x1))) | (3) |
[L#(x1)] | = | -2 + x1 |
[a(x1)] | = | 2 + x1 |
[b(x1)] | = | -2 + x1 |
[c(x1)] | = | 2 + x1 |
[d(x1)] | = | x1 |
[R(x1)] | = | 0 |
L#(a(a(x1))) | → | L#(a(b(c(x1)))) | (22) |
There are no pairs anymore.
a#(d(x1)) | → | d#(a(x1)) | (18) |
d#(x1) | → | b#(a(x1)) | (20) |
b#(a(a(x1))) | → | a#(b(c(x1))) | (9) |
a#(d(x1)) | → | a#(x1) | (19) |
b#(a(a(x1))) | → | b#(c(x1)) | (10) |
b#(a(a(x1))) | → | c#(x1) | (11) |
c#(a(x1)) | → | a#(c(x1)) | (12) |
c#(a(x1)) | → | c#(x1) | (13) |
c#(b(x1)) | → | d#(x1) | (17) |
d#(x1) | → | a#(x1) | (21) |
c#(R(x1)) | → | c#(b(R(x1))) | (26) |
b#(c(a(x1))) | → | a#(b(c(x1))) | (14) |
b#(c(a(x1))) | → | b#(c(x1)) | (15) |
b#(c(a(x1))) | → | c#(x1) | (16) |
[c(x1)] | = | 1 · x1 |
[a(x1)] | = | 1 · x1 |
[b(x1)] | = | 1 · x1 |
[d(x1)] | = | 1 · x1 |
[R(x1)] | = | 1 · x1 |
[d#(x1)] | = | 1 · x1 |
[a#(x1)] | = | 1 · x1 |
[b#(x1)] | = | 1 · x1 |
[c#(x1)] | = | 1 · x1 |
c(a(x1)) | → | a(c(x1)) | (2) |
c(b(x1)) | → | d(x1) | (4) |
c(R(x1)) | → | c(b(R(x1))) | (8) |
a(d(x1)) | → | d(a(x1)) | (5) |
d(x1) | → | b(a(x1)) | (6) |
b(a(a(x1))) | → | a(b(c(x1))) | (1) |
b(c(a(x1))) | → | a(b(c(x1))) | (3) |
[a#(x1)] | = | 1 + 1 · x1 |
[d(x1)] | = | 1 + 1 · x1 |
[d#(x1)] | = | 1 + 1 · x1 |
[a(x1)] | = | 1 + 1 · x1 |
[b#(x1)] | = | 1 · x1 |
[b(x1)] | = | 1 · x1 |
[c(x1)] | = | 1 + 1 · x1 |
[c#(x1)] | = | 1 + 1 · x1 |
[R(x1)] | = | 1 + 1 · x1 |
a#(d(x1)) | → | a#(x1) | (19) |
b#(a(a(x1))) | → | b#(c(x1)) | (10) |
b#(a(a(x1))) | → | c#(x1) | (11) |
c#(a(x1)) | → | c#(x1) | (13) |
b#(c(a(x1))) | → | b#(c(x1)) | (15) |
b#(c(a(x1))) | → | c#(x1) | (16) |
The dependency pairs are split into 1 component.
d#(x1) | → | b#(a(x1)) | (20) |
b#(a(a(x1))) | → | a#(b(c(x1))) | (9) |
a#(d(x1)) | → | d#(a(x1)) | (18) |
d#(x1) | → | a#(x1) | (21) |
b#(c(a(x1))) | → | a#(b(c(x1))) | (14) |
[d#(x1)] | = | 1 · x1 |
[b#(x1)] | = | 0 |
[a(x1)] | = | 1 · x1 |
[a#(x1)] | = | 1 · x1 |
[b(x1)] | = | 0 |
[c(x1)] | = | 0 |
[d(x1)] | = | 1 + 1 · x1 |
[R(x1)] | = | 1 + 1 · x1 |
d(x1) | → | b(a(x1)) | (6) |
b(a(a(x1))) | → | a(b(c(x1))) | (1) |
a(d(x1)) | → | d(a(x1)) | (5) |
b(c(a(x1))) | → | a(b(c(x1))) | (3) |
a#(d(x1)) | → | d#(a(x1)) | (18) |
The dependency pairs are split into 0 components.