The rewrite relation of the following TRS is considered.
| 0(1(2(x1))) | → | 2(3(0(3(1(x1))))) | (1) |
| 0(0(0(2(x1)))) | → | 3(0(0(3(0(2(x1)))))) | (2) |
| 0(0(2(2(x1)))) | → | 2(3(0(0(3(2(x1)))))) | (3) |
| 0(1(1(2(x1)))) | → | 2(3(0(3(1(1(x1)))))) | (4) |
| 0(1(2(1(x1)))) | → | 0(1(2(4(1(3(x1)))))) | (5) |
| 0(1(2(2(x1)))) | → | 2(3(0(3(1(2(x1)))))) | (6) |
| 0(1(2(5(x1)))) | → | 2(0(5(3(1(x1))))) | (7) |
| 0(1(5(1(x1)))) | → | 1(0(3(5(3(1(x1)))))) | (8) |
| 0(1(5(2(x1)))) | → | 2(4(1(0(3(5(x1)))))) | (9) |
| 0(1(5(2(x1)))) | → | 2(4(3(1(0(5(x1)))))) | (10) |
| 0(1(5(2(x1)))) | → | 3(1(3(0(5(2(x1)))))) | (11) |
| 0(1(5(5(x1)))) | → | 1(3(0(5(5(x1))))) | (12) |
| 0(2(1(2(x1)))) | → | 2(2(3(0(3(1(x1)))))) | (13) |
| 0(2(5(2(x1)))) | → | 2(2(3(0(5(x1))))) | (14) |
| 1(1(4(5(x1)))) | → | 5(4(1(3(1(x1))))) | (15) |
| 1(5(1(5(x1)))) | → | 1(3(5(5(3(1(x1)))))) | (16) |
| 1(5(5(1(x1)))) | → | 1(5(3(1(5(3(x1)))))) | (17) |
| 2(0(1(2(x1)))) | → | 2(2(3(0(3(1(x1)))))) | (18) |
| 2(0(1(5(x1)))) | → | 2(1(3(0(5(x1))))) | (19) |
| 5(0(1(2(x1)))) | → | 3(0(5(3(1(2(x1)))))) | (20) |
| 5(0(1(2(x1)))) | → | 4(2(3(0(5(1(x1)))))) | (21) |
| 0(0(0(0(1(x1))))) | → | 0(0(1(0(0(3(x1)))))) | (22) |
| 0(0(1(2(5(x1))))) | → | 2(0(0(5(3(1(x1)))))) | (23) |
| 0(0(1(5(2(x1))))) | → | 0(1(0(3(5(2(x1)))))) | (24) |
| 0(1(0(4(5(x1))))) | → | 5(4(0(0(3(1(x1)))))) | (25) |
| 0(1(1(1(2(x1))))) | → | 1(0(3(1(1(2(x1)))))) | (26) |
| 0(1(2(1(5(x1))))) | → | 2(1(0(5(3(1(x1)))))) | (27) |
| 0(1(3(5(2(x1))))) | → | 3(0(4(1(5(2(x1)))))) | (28) |
| 0(1(4(2(5(x1))))) | → | 2(4(3(0(5(1(x1)))))) | (29) |
| 0(1(4(4(2(x1))))) | → | 1(0(4(4(4(2(x1)))))) | (30) |
| 0(1(5(0(1(x1))))) | → | 0(1(1(0(5(3(x1)))))) | (31) |
| 0(1(5(0(5(x1))))) | → | 3(5(1(0(5(0(x1)))))) | (32) |
| 0(2(4(2(1(x1))))) | → | 2(1(2(4(3(0(x1)))))) | (33) |
| 0(4(0(2(1(x1))))) | → | 3(0(4(1(2(0(x1)))))) | (34) |
| 0(5(0(1(5(x1))))) | → | 0(5(0(5(3(1(x1)))))) | (35) |
| 1(0(0(1(5(x1))))) | → | 5(1(0(0(3(1(x1)))))) | (36) |
| 1(0(1(4(5(x1))))) | → | 1(4(4(1(0(5(x1)))))) | (37) |
| 1(4(0(1(5(x1))))) | → | 1(4(1(3(0(5(x1)))))) | (38) |
| 2(0(1(5(2(x1))))) | → | 2(1(0(3(5(2(x1)))))) | (39) |
| 2(0(4(2(1(x1))))) | → | 2(1(4(2(3(0(x1)))))) | (40) |
| 2(0(5(1(2(x1))))) | → | 0(3(1(5(2(2(x1)))))) | (41) |
| 2(2(1(1(2(x1))))) | → | 2(2(1(3(1(2(x1)))))) | (42) |
| 2(5(1(5(2(x1))))) | → | 2(4(1(5(5(2(x1)))))) | (43) |
| 5(0(1(4(5(x1))))) | → | 4(1(0(3(5(5(x1)))))) | (44) |
| 5(1(0(1(5(x1))))) | → | 3(1(5(1(0(5(x1)))))) | (45) |
| 5(4(0(2(1(x1))))) | → | 4(1(3(5(2(0(x1)))))) | (46) |
| 5(5(1(4(5(x1))))) | → | 5(4(1(3(5(5(x1)))))) | (47) |
There are 167 ruless (increase limit for explicit display).
The dependency pairs are split into 1 component.
| 0#(1(5(0(5(x1))))) | → | 0#(x1) | (141) |
| 5#(4(0(2(1(x1))))) | → | 0#(x1) | (213) |
| 0#(1(0(4(5(x1))))) | → | 1#(x1) | (211) |
| 5#(0(1(4(5(x1))))) | → | 5#(5(x1)) | (210) |
| 2#(0(5(1(2(x1))))) | → | 2#(2(x1)) | (137) |
| 0#(1(5(2(x1)))) | → | 5#(x1) | (136) |
| 2#(5(1(5(2(x1))))) | → | 1#(5(5(2(x1)))) | (209) |
| 5#(1(0(1(5(x1))))) | → | 1#(0(5(x1))) | (133) |
| 0#(1(3(5(2(x1))))) | → | 1#(5(2(x1))) | (132) |
| 0#(5(0(1(5(x1))))) | → | 1#(x1) | (131) |
| 5#(5(1(4(5(x1))))) | → | 5#(5(x1)) | (123) |
| 5#(0(1(2(x1)))) | → | 0#(5(1(x1))) | (203) |
| 0#(1(4(2(5(x1))))) | → | 5#(1(x1)) | (201) |
| 0#(2(1(2(x1)))) | → | 1#(x1) | (118) |
| 0#(1(5(0(5(x1))))) | → | 5#(0(x1)) | (114) |
| 2#(0(5(1(2(x1))))) | → | 1#(5(2(2(x1)))) | (113) |
| 1#(1(4(5(x1)))) | → | 1#(x1) | (194) |
| 2#(0(5(1(2(x1))))) | → | 5#(2(2(x1))) | (110) |
| 5#(4(0(2(1(x1))))) | → | 5#(2(0(x1))) | (192) |
| 2#(0(1(2(x1)))) | → | 1#(x1) | (107) |
| 0#(1(2(1(x1)))) | → | 0#(1(2(4(1(3(x1)))))) | (103) |
| 0#(1(3(5(2(x1))))) | → | 0#(4(1(5(2(x1))))) | (183) |
| 0#(1(4(2(5(x1))))) | → | 1#(x1) | (101) |
| 5#(1(0(1(5(x1))))) | → | 0#(5(x1)) | (181) |
| 0#(1(5(2(x1)))) | → | 0#(5(2(x1))) | (99) |
| 0#(1(5(0(5(x1))))) | → | 5#(1(0(5(0(x1))))) | (180) |
| 5#(0(1(2(x1)))) | → | 1#(x1) | (179) |
| 5#(4(0(2(1(x1))))) | → | 2#(0(x1)) | (176) |
| 2#(0(1(5(x1)))) | → | 0#(5(x1)) | (92) |
| 5#(1(0(1(5(x1))))) | → | 1#(5(1(0(5(x1))))) | (174) |
| 0#(0(1(2(5(x1))))) | → | 1#(x1) | (90) |
| 5#(0(1(2(x1)))) | → | 5#(1(x1)) | (171) |
| 1#(0(1(4(5(x1))))) | → | 1#(0(5(x1))) | (168) |
| 5#(1(0(1(5(x1))))) | → | 5#(1(0(5(x1)))) | (82) |
| 0#(4(0(2(1(x1))))) | → | 1#(2(0(x1))) | (80) |
| 0#(4(0(2(1(x1))))) | → | 0#(4(1(2(0(x1))))) | (76) |
| 0#(2(5(2(x1)))) | → | 5#(x1) | (77) |
| 1#(4(0(1(5(x1))))) | → | 0#(5(x1)) | (164) |
| 1#(5(1(5(x1)))) | → | 1#(x1) | (71) |
| 1#(0(0(1(5(x1))))) | → | 1#(x1) | (72) |
| 0#(1(5(0(5(x1))))) | → | 0#(5(0(x1))) | (163) |
| 1#(0(1(4(5(x1))))) | → | 0#(5(x1)) | (161) |
| 0#(1(5(5(x1)))) | → | 0#(5(5(x1))) | (159) |
| 0#(2(5(2(x1)))) | → | 0#(5(x1)) | (67) |
| 0#(1(5(2(x1)))) | → | 1#(0(5(x1))) | (66) |
| 0#(1(2(1(5(x1))))) | → | 1#(x1) | (156) |
| 2#(5(1(5(2(x1))))) | → | 5#(5(2(x1))) | (157) |
| 0#(2(4(2(1(x1))))) | → | 0#(x1) | (65) |
| 0#(1(1(2(x1)))) | → | 1#(x1) | (64) |
| 0#(1(1(2(x1)))) | → | 1#(1(x1)) | (155) |
| 0#(4(0(2(1(x1))))) | → | 2#(0(x1)) | (62) |
| 0#(1(2(2(x1)))) | → | 1#(2(x1)) | (61) |
| 0#(1(5(2(x1)))) | → | 5#(x1) | (136) |
| 2#(0(4(2(1(x1))))) | → | 0#(x1) | (60) |
| 0#(4(0(2(1(x1))))) | → | 0#(x1) | (57) |
| 0#(1(5(2(x1)))) | → | 0#(5(x1)) | (150) |
| 0#(1(2(x1))) | → | 1#(x1) | (147) |
| 0#(1(4(2(5(x1))))) | → | 0#(5(1(x1))) | (145) |
| 0#(1(5(0(5(x1))))) | → | 1#(0(5(0(x1)))) | (143) |
| 0#(1(2(5(x1)))) | → | 1#(x1) | (49) |
| [0#(x1)] | = | x1 + 1740 |
| [1(x1)] | = | x1 + 1104 |
| [4(x1)] | = | x1 + 0 |
| [5(x1)] | = | x1 + 26929 |
| [3(x1)] | = | x1 + 0 |
| [2#(x1)] | = | x1 + 18171 |
| [0(x1)] | = | x1 + 2842 |
| [5#(x1)] | = | x1 + 25826 |
| [2(x1)] | = | x1 + 22116 |
| [1#(x1)] | = | x1 + 0 |
| 2(0(1(2(x1)))) | → | 2(2(3(0(3(1(x1)))))) | (18) |
| 0(1(1(2(x1)))) | → | 2(3(0(3(1(1(x1)))))) | (4) |
| 1(1(4(5(x1)))) | → | 5(4(1(3(1(x1))))) | (15) |
| 0(1(5(1(x1)))) | → | 1(0(3(5(3(1(x1)))))) | (8) |
| 0(1(2(x1))) | → | 2(3(0(3(1(x1))))) | (1) |
| 0(0(2(2(x1)))) | → | 2(3(0(0(3(2(x1)))))) | (3) |
| 1(5(1(5(x1)))) | → | 1(3(5(5(3(1(x1)))))) | (16) |
| 5(0(1(2(x1)))) | → | 4(2(3(0(5(1(x1)))))) | (21) |
| 1(0(0(1(5(x1))))) | → | 5(1(0(0(3(1(x1)))))) | (36) |
| 0(1(1(1(2(x1))))) | → | 1(0(3(1(1(2(x1)))))) | (26) |
| 2(0(1(5(x1)))) | → | 2(1(3(0(5(x1))))) | (19) |
| 0(1(5(0(5(x1))))) | → | 3(5(1(0(5(0(x1)))))) | (32) |
| 1(5(5(1(x1)))) | → | 1(5(3(1(5(3(x1)))))) | (17) |
| 0(1(2(1(5(x1))))) | → | 2(1(0(5(3(1(x1)))))) | (27) |
| 0(4(0(2(1(x1))))) | → | 3(0(4(1(2(0(x1)))))) | (34) |
| 0(0(0(0(1(x1))))) | → | 0(0(1(0(0(3(x1)))))) | (22) |
| 0(1(3(5(2(x1))))) | → | 3(0(4(1(5(2(x1)))))) | (28) |
| 5(0(1(4(5(x1))))) | → | 4(1(0(3(5(5(x1)))))) | (44) |
| 0(1(2(1(x1)))) | → | 0(1(2(4(1(3(x1)))))) | (5) |
| 0(2(4(2(1(x1))))) | → | 2(1(2(4(3(0(x1)))))) | (33) |
| 0(1(5(2(x1)))) | → | 2(4(3(1(0(5(x1)))))) | (10) |
| 2(0(1(5(2(x1))))) | → | 2(1(0(3(5(2(x1)))))) | (39) |
| 0(1(2(5(x1)))) | → | 2(0(5(3(1(x1))))) | (7) |
| 5(0(1(2(x1)))) | → | 3(0(5(3(1(2(x1)))))) | (20) |
| 0(1(0(4(5(x1))))) | → | 5(4(0(0(3(1(x1)))))) | (25) |
| 0(1(4(4(2(x1))))) | → | 1(0(4(4(4(2(x1)))))) | (30) |
| 0(2(5(2(x1)))) | → | 2(2(3(0(5(x1))))) | (14) |
| 0(1(5(0(1(x1))))) | → | 0(1(1(0(5(3(x1)))))) | (31) |
| 0(1(5(5(x1)))) | → | 1(3(0(5(5(x1))))) | (12) |
| 5(1(0(1(5(x1))))) | → | 3(1(5(1(0(5(x1)))))) | (45) |
| 0(0(1(2(5(x1))))) | → | 2(0(0(5(3(1(x1)))))) | (23) |
| 0(0(1(5(2(x1))))) | → | 0(1(0(3(5(2(x1)))))) | (24) |
| 0(1(5(2(x1)))) | → | 3(1(3(0(5(2(x1)))))) | (11) |
| 0(1(5(2(x1)))) | → | 2(4(1(0(3(5(x1)))))) | (9) |
| 0(2(1(2(x1)))) | → | 2(2(3(0(3(1(x1)))))) | (13) |
| 2(0(4(2(1(x1))))) | → | 2(1(4(2(3(0(x1)))))) | (40) |
| 0(1(2(2(x1)))) | → | 2(3(0(3(1(2(x1)))))) | (6) |
| 1(4(0(1(5(x1))))) | → | 1(4(1(3(0(5(x1)))))) | (38) |
| 5(5(1(4(5(x1))))) | → | 5(4(1(3(5(5(x1)))))) | (47) |
| 1(0(1(4(5(x1))))) | → | 1(4(4(1(0(5(x1)))))) | (37) |
| 2(0(5(1(2(x1))))) | → | 0(3(1(5(2(2(x1)))))) | (41) |
| 2(2(1(1(2(x1))))) | → | 2(2(1(3(1(2(x1)))))) | (42) |
| 5(4(0(2(1(x1))))) | → | 4(1(3(5(2(0(x1)))))) | (46) |
| 0(5(0(1(5(x1))))) | → | 0(5(0(5(3(1(x1)))))) | (35) |
| 0(1(4(2(5(x1))))) | → | 2(4(3(0(5(1(x1)))))) | (29) |
| 2(5(1(5(2(x1))))) | → | 2(4(1(5(5(2(x1)))))) | (43) |
| 0(0(0(2(x1)))) | → | 3(0(0(3(0(2(x1)))))) | (2) |
| 0#(1(5(0(5(x1))))) | → | 0#(x1) | (141) |
| 5#(4(0(2(1(x1))))) | → | 0#(x1) | (213) |
| 0#(1(0(4(5(x1))))) | → | 1#(x1) | (211) |
| 5#(0(1(4(5(x1))))) | → | 5#(5(x1)) | (210) |
| 2#(0(5(1(2(x1))))) | → | 2#(2(x1)) | (137) |
| 0#(1(5(2(x1)))) | → | 5#(x1) | (136) |
| 2#(5(1(5(2(x1))))) | → | 1#(5(5(2(x1)))) | (209) |
| 5#(1(0(1(5(x1))))) | → | 1#(0(5(x1))) | (133) |
| 0#(1(3(5(2(x1))))) | → | 1#(5(2(x1))) | (132) |
| 0#(5(0(1(5(x1))))) | → | 1#(x1) | (131) |
| 5#(5(1(4(5(x1))))) | → | 5#(5(x1)) | (123) |
| 5#(0(1(2(x1)))) | → | 0#(5(1(x1))) | (203) |
| 0#(1(4(2(5(x1))))) | → | 5#(1(x1)) | (201) |
| 0#(2(1(2(x1)))) | → | 1#(x1) | (118) |
| 0#(1(5(0(5(x1))))) | → | 5#(0(x1)) | (114) |
| 2#(0(5(1(2(x1))))) | → | 1#(5(2(2(x1)))) | (113) |
| 1#(1(4(5(x1)))) | → | 1#(x1) | (194) |
| 2#(0(5(1(2(x1))))) | → | 5#(2(2(x1))) | (110) |
| 5#(4(0(2(1(x1))))) | → | 5#(2(0(x1))) | (192) |
| 2#(0(1(2(x1)))) | → | 1#(x1) | (107) |
| 0#(1(4(2(5(x1))))) | → | 1#(x1) | (101) |
| 5#(1(0(1(5(x1))))) | → | 0#(5(x1)) | (181) |
| 0#(1(5(2(x1)))) | → | 0#(5(2(x1))) | (99) |
| 0#(1(5(0(5(x1))))) | → | 5#(1(0(5(0(x1))))) | (180) |
| 5#(0(1(2(x1)))) | → | 1#(x1) | (179) |
| 5#(4(0(2(1(x1))))) | → | 2#(0(x1)) | (176) |
| 2#(0(1(5(x1)))) | → | 0#(5(x1)) | (92) |
| 5#(1(0(1(5(x1))))) | → | 1#(5(1(0(5(x1))))) | (174) |
| 0#(0(1(2(5(x1))))) | → | 1#(x1) | (90) |
| 5#(0(1(2(x1)))) | → | 5#(1(x1)) | (171) |
| 1#(0(1(4(5(x1))))) | → | 1#(0(5(x1))) | (168) |
| 5#(1(0(1(5(x1))))) | → | 5#(1(0(5(x1)))) | (82) |
| 0#(4(0(2(1(x1))))) | → | 1#(2(0(x1))) | (80) |
| 0#(2(5(2(x1)))) | → | 5#(x1) | (77) |
| 1#(4(0(1(5(x1))))) | → | 0#(5(x1)) | (164) |
| 1#(5(1(5(x1)))) | → | 1#(x1) | (71) |
| 1#(0(0(1(5(x1))))) | → | 1#(x1) | (72) |
| 0#(1(5(0(5(x1))))) | → | 0#(5(0(x1))) | (163) |
| 1#(0(1(4(5(x1))))) | → | 0#(5(x1)) | (161) |
| 0#(1(5(5(x1)))) | → | 0#(5(5(x1))) | (159) |
| 0#(2(5(2(x1)))) | → | 0#(5(x1)) | (67) |
| 0#(1(5(2(x1)))) | → | 1#(0(5(x1))) | (66) |
| 0#(1(2(1(5(x1))))) | → | 1#(x1) | (156) |
| 2#(5(1(5(2(x1))))) | → | 5#(5(2(x1))) | (157) |
| 0#(2(4(2(1(x1))))) | → | 0#(x1) | (65) |
| 0#(1(1(2(x1)))) | → | 1#(x1) | (64) |
| 0#(1(1(2(x1)))) | → | 1#(1(x1)) | (155) |
| 0#(4(0(2(1(x1))))) | → | 2#(0(x1)) | (62) |
| 0#(1(2(2(x1)))) | → | 1#(2(x1)) | (61) |
| 0#(1(5(2(x1)))) | → | 5#(x1) | (136) |
| 2#(0(4(2(1(x1))))) | → | 0#(x1) | (60) |
| 0#(4(0(2(1(x1))))) | → | 0#(x1) | (57) |
| 0#(1(5(2(x1)))) | → | 0#(5(x1)) | (150) |
| 0#(1(2(x1))) | → | 1#(x1) | (147) |
| 0#(1(4(2(5(x1))))) | → | 0#(5(1(x1))) | (145) |
| 0#(1(5(0(5(x1))))) | → | 1#(0(5(0(x1)))) | (143) |
| 0#(1(2(5(x1)))) | → | 1#(x1) | (49) |
The dependency pairs are split into 1 component.
| 0#(4(0(2(1(x1))))) | → | 0#(4(1(2(0(x1))))) | (76) |
| [0#(x1)] | = | x1 + 1740 |
| [1(x1)] | = | 1 |
| [4(x1)] | = | x1 + 0 |
| [5(x1)] | = | x1 + 0 |
| [3(x1)] | = | x1 + 0 |
| [2#(x1)] | = | x1 + 18171 |
| [0(x1)] | = | 2 |
| [5#(x1)] | = | x1 + 25826 |
| [2(x1)] | = | 2 |
| [1#(x1)] | = | x1 + 0 |
| 2(0(1(2(x1)))) | → | 2(2(3(0(3(1(x1)))))) | (18) |
| 0(1(1(2(x1)))) | → | 2(3(0(3(1(1(x1)))))) | (4) |
| 1(1(4(5(x1)))) | → | 5(4(1(3(1(x1))))) | (15) |
| 0(1(5(1(x1)))) | → | 1(0(3(5(3(1(x1)))))) | (8) |
| 0(1(2(x1))) | → | 2(3(0(3(1(x1))))) | (1) |
| 0(0(2(2(x1)))) | → | 2(3(0(0(3(2(x1)))))) | (3) |
| 1(5(1(5(x1)))) | → | 1(3(5(5(3(1(x1)))))) | (16) |
| 5(0(1(2(x1)))) | → | 4(2(3(0(5(1(x1)))))) | (21) |
| 1(0(0(1(5(x1))))) | → | 5(1(0(0(3(1(x1)))))) | (36) |
| 0(1(1(1(2(x1))))) | → | 1(0(3(1(1(2(x1)))))) | (26) |
| 2(0(1(5(x1)))) | → | 2(1(3(0(5(x1))))) | (19) |
| 0(1(5(0(5(x1))))) | → | 3(5(1(0(5(0(x1)))))) | (32) |
| 1(5(5(1(x1)))) | → | 1(5(3(1(5(3(x1)))))) | (17) |
| 0(1(2(1(5(x1))))) | → | 2(1(0(5(3(1(x1)))))) | (27) |
| 0(4(0(2(1(x1))))) | → | 3(0(4(1(2(0(x1)))))) | (34) |
| 0(0(0(0(1(x1))))) | → | 0(0(1(0(0(3(x1)))))) | (22) |
| 0(1(3(5(2(x1))))) | → | 3(0(4(1(5(2(x1)))))) | (28) |
| 5(0(1(4(5(x1))))) | → | 4(1(0(3(5(5(x1)))))) | (44) |
| 0(1(2(1(x1)))) | → | 0(1(2(4(1(3(x1)))))) | (5) |
| 0(2(4(2(1(x1))))) | → | 2(1(2(4(3(0(x1)))))) | (33) |
| 0(1(5(2(x1)))) | → | 2(4(3(1(0(5(x1)))))) | (10) |
| 2(0(1(5(2(x1))))) | → | 2(1(0(3(5(2(x1)))))) | (39) |
| 0(1(2(5(x1)))) | → | 2(0(5(3(1(x1))))) | (7) |
| 5(0(1(2(x1)))) | → | 3(0(5(3(1(2(x1)))))) | (20) |
| 0(1(0(4(5(x1))))) | → | 5(4(0(0(3(1(x1)))))) | (25) |
| 0(1(4(4(2(x1))))) | → | 1(0(4(4(4(2(x1)))))) | (30) |
| 0(2(5(2(x1)))) | → | 2(2(3(0(5(x1))))) | (14) |
| 0(1(5(0(1(x1))))) | → | 0(1(1(0(5(3(x1)))))) | (31) |
| 0(1(5(5(x1)))) | → | 1(3(0(5(5(x1))))) | (12) |
| 5(1(0(1(5(x1))))) | → | 3(1(5(1(0(5(x1)))))) | (45) |
| 0(0(1(2(5(x1))))) | → | 2(0(0(5(3(1(x1)))))) | (23) |
| 0(0(1(5(2(x1))))) | → | 0(1(0(3(5(2(x1)))))) | (24) |
| 0(1(5(2(x1)))) | → | 3(1(3(0(5(2(x1)))))) | (11) |
| 0(1(5(2(x1)))) | → | 2(4(1(0(3(5(x1)))))) | (9) |
| 0(2(1(2(x1)))) | → | 2(2(3(0(3(1(x1)))))) | (13) |
| 2(0(4(2(1(x1))))) | → | 2(1(4(2(3(0(x1)))))) | (40) |
| 0(1(2(2(x1)))) | → | 2(3(0(3(1(2(x1)))))) | (6) |
| 1(4(0(1(5(x1))))) | → | 1(4(1(3(0(5(x1)))))) | (38) |
| 5(5(1(4(5(x1))))) | → | 5(4(1(3(5(5(x1)))))) | (47) |
| 1(0(1(4(5(x1))))) | → | 1(4(4(1(0(5(x1)))))) | (37) |
| 2(0(5(1(2(x1))))) | → | 0(3(1(5(2(2(x1)))))) | (41) |
| 2(2(1(1(2(x1))))) | → | 2(2(1(3(1(2(x1)))))) | (42) |
| 5(4(0(2(1(x1))))) | → | 4(1(3(5(2(0(x1)))))) | (46) |
| 0(5(0(1(5(x1))))) | → | 0(5(0(5(3(1(x1)))))) | (35) |
| 0(1(4(2(5(x1))))) | → | 2(4(3(0(5(1(x1)))))) | (29) |
| 2(5(1(5(2(x1))))) | → | 2(4(1(5(5(2(x1)))))) | (43) |
| 0(0(0(2(x1)))) | → | 3(0(0(3(0(2(x1)))))) | (2) |
| 0#(4(0(2(1(x1))))) | → | 0#(4(1(2(0(x1))))) | (76) |
The dependency pairs are split into 0 components.