The rewrite relation of the following TRS is considered.
0(1(2(2(x1)))) | → | 0(1(0(2(2(x1))))) | (1) |
0(1(2(2(x1)))) | → | 0(1(2(3(2(x1))))) | (2) |
0(1(2(2(x1)))) | → | 0(2(2(1(3(x1))))) | (3) |
0(1(2(2(x1)))) | → | 1(0(3(2(2(x1))))) | (4) |
0(1(2(2(x1)))) | → | 1(2(0(3(2(x1))))) | (5) |
0(1(2(2(x1)))) | → | 1(3(0(2(2(x1))))) | (6) |
0(1(2(2(x1)))) | → | 1(3(2(0(2(x1))))) | (7) |
0(1(2(2(x1)))) | → | 0(1(0(4(2(2(x1)))))) | (8) |
0(1(2(2(x1)))) | → | 0(2(1(3(2(3(x1)))))) | (9) |
0(1(2(2(x1)))) | → | 1(2(1(0(4(2(x1)))))) | (10) |
0(1(2(2(x1)))) | → | 1(5(0(4(2(2(x1)))))) | (11) |
0(1(2(2(x1)))) | → | 2(0(3(1(3(2(x1)))))) | (12) |
0(1(2(2(x1)))) | → | 2(1(1(0(4(2(x1)))))) | (13) |
0(1(2(2(x1)))) | → | 2(1(3(0(2(0(x1)))))) | (14) |
0(1(2(2(x1)))) | → | 2(1(3(3(2(0(x1)))))) | (15) |
0(1(2(2(x1)))) | → | 2(1(5(3(0(2(x1)))))) | (16) |
0(1(2(2(x1)))) | → | 2(2(1(3(0(5(x1)))))) | (17) |
0(1(2(2(x1)))) | → | 2(4(1(3(2(0(x1)))))) | (18) |
0(1(4(5(x1)))) | → | 1(5(0(4(1(x1))))) | (19) |
0(1(4(5(x1)))) | → | 5(0(4(1(5(x1))))) | (20) |
0(1(4(5(x1)))) | → | 5(4(1(5(0(x1))))) | (21) |
0(1(4(5(x1)))) | → | 1(1(5(0(4(1(x1)))))) | (22) |
0(1(4(5(x1)))) | → | 5(4(1(5(5(0(x1)))))) | (23) |
5(1(2(2(x1)))) | → | 1(0(2(2(5(x1))))) | (24) |
5(1(2(2(x1)))) | → | 1(3(5(2(2(x1))))) | (25) |
5(1(2(2(x1)))) | → | 1(5(2(3(2(x1))))) | (26) |
5(1(2(2(x1)))) | → | 1(5(0(2(2(3(x1)))))) | (27) |
5(1(2(2(x1)))) | → | 2(1(0(3(2(5(x1)))))) | (28) |
5(1(2(2(x1)))) | → | 3(1(3(5(2(2(x1)))))) | (29) |
5(1(2(2(x1)))) | → | 4(1(3(2(2(5(x1)))))) | (30) |
5(1(2(2(x1)))) | → | 5(1(0(4(2(2(x1)))))) | (31) |
5(1(2(2(x1)))) | → | 5(1(2(0(4(2(x1)))))) | (32) |
0(1(1(4(5(x1))))) | → | 3(1(0(4(1(5(x1)))))) | (33) |
0(1(2(2(2(x1))))) | → | 1(0(2(2(5(2(x1)))))) | (34) |
0(1(2(2(5(x1))))) | → | 1(5(0(4(2(2(x1)))))) | (35) |
0(1(2(4(5(x1))))) | → | 2(5(1(0(4(5(x1)))))) | (36) |
0(1(4(5(2(x1))))) | → | 1(0(4(2(0(5(x1)))))) | (37) |
0(1(4(5(5(x1))))) | → | 5(0(4(0(1(5(x1)))))) | (38) |
0(1(5(4(5(x1))))) | → | 1(5(0(4(1(5(x1)))))) | (39) |
0(5(1(2(2(x1))))) | → | 0(1(3(2(5(2(x1)))))) | (40) |
3(3(1(2(2(x1))))) | → | 1(3(2(0(3(2(x1)))))) | (41) |
3(4(4(0(5(x1))))) | → | 3(5(4(5(0(4(x1)))))) | (42) |
5(0(1(2(2(x1))))) | → | 1(3(2(0(5(2(x1)))))) | (43) |
5(1(2(2(5(x1))))) | → | 1(5(2(3(2(5(x1)))))) | (44) |
5(2(1(2(2(x1))))) | → | 2(1(3(5(2(2(x1)))))) | (45) |
5(2(4(0(5(x1))))) | → | 0(4(2(5(5(5(x1)))))) | (46) |
5(2(4(0(5(x1))))) | → | 0(4(5(4(2(5(x1)))))) | (47) |
There are 112 ruless (increase limit for explicit display).
The dependency pairs are split into 1 component.
0#(1(2(2(x1)))) | → | 0#(x1) | (68) |
5#(0(1(2(2(x1))))) | → | 0#(5(2(x1))) | (138) |
0#(1(2(2(2(x1))))) | → | 5#(2(x1)) | (96) |
5#(2(4(0(5(x1))))) | → | 5#(5(5(x1))) | (94) |
0#(1(4(5(x1)))) | → | 0#(x1) | (92) |
0#(1(4(5(x1)))) | → | 0#(x1) | (92) |
0#(1(4(5(2(x1))))) | → | 5#(x1) | (89) |
5#(1(2(2(x1)))) | → | 5#(x1) | (58) |
0#(1(2(2(x1)))) | → | 5#(x1) | (128) |
5#(2(4(0(5(x1))))) | → | 5#(5(x1)) | (81) |
0#(1(2(2(x1)))) | → | 0#(x1) | (68) |
0#(1(2(2(x1)))) | → | 0#(5(x1)) | (119) |
0#(1(2(2(x1)))) | → | 0#(x1) | (68) |
5#(1(2(2(x1)))) | → | 5#(x1) | (58) |
0#(1(4(5(2(x1))))) | → | 0#(5(x1)) | (118) |
0#(1(4(5(5(x1))))) | → | 0#(1(5(x1))) | (117) |
0#(1(4(5(x1)))) | → | 5#(0(x1)) | (57) |
5#(0(1(2(2(x1))))) | → | 5#(2(x1)) | (115) |
0#(5(1(2(2(x1))))) | → | 5#(2(x1)) | (113) |
5#(1(2(2(x1)))) | → | 5#(x1) | (58) |
0#(1(4(5(x1)))) | → | 5#(0(x1)) | (57) |
0#(1(4(5(x1)))) | → | 5#(5(0(x1))) | (50) |
[0#(x1)] | = | x1 + 1 |
[1(x1)] | = | x1 + 0 |
[4(x1)] | = | x1 + 0 |
[5(x1)] | = | x1 + 0 |
[3(x1)] | = | 0 |
[0(x1)] | = | x1 + 0 |
[3#(x1)] | = | 0 |
[5#(x1)] | = | x1 + 0 |
[2(x1)] | = | x1 + 1104 |
0(1(2(2(x1)))) | → | 2(4(1(3(2(0(x1)))))) | (18) |
0(1(2(2(x1)))) | → | 1(0(3(2(2(x1))))) | (4) |
0(1(2(2(x1)))) | → | 2(1(3(3(2(0(x1)))))) | (15) |
0(1(2(2(x1)))) | → | 0(1(0(4(2(2(x1)))))) | (8) |
0(1(2(2(x1)))) | → | 0(1(0(2(2(x1))))) | (1) |
0(1(2(2(x1)))) | → | 0(2(2(1(3(x1))))) | (3) |
0(1(2(2(x1)))) | → | 2(1(5(3(0(2(x1)))))) | (16) |
0(1(4(5(x1)))) | → | 5(4(1(5(0(x1))))) | (21) |
0(1(2(4(5(x1))))) | → | 2(5(1(0(4(5(x1)))))) | (36) |
5(1(2(2(x1)))) | → | 1(5(2(3(2(x1))))) | (26) |
0(1(4(5(x1)))) | → | 1(5(0(4(1(x1))))) | (19) |
5(1(2(2(x1)))) | → | 5(1(2(0(4(2(x1)))))) | (32) |
0(1(2(2(x1)))) | → | 2(2(1(3(0(5(x1)))))) | (17) |
5(1(2(2(x1)))) | → | 1(5(0(2(2(3(x1)))))) | (27) |
0(1(2(2(2(x1))))) | → | 1(0(2(2(5(2(x1)))))) | (34) |
0(1(4(5(x1)))) | → | 1(1(5(0(4(1(x1)))))) | (22) |
5(1(2(2(x1)))) | → | 2(1(0(3(2(5(x1)))))) | (28) |
5(1(2(2(5(x1))))) | → | 1(5(2(3(2(5(x1)))))) | (44) |
0(1(2(2(x1)))) | → | 1(2(0(3(2(x1))))) | (5) |
0(1(1(4(5(x1))))) | → | 3(1(0(4(1(5(x1)))))) | (33) |
0(1(2(2(x1)))) | → | 1(2(1(0(4(2(x1)))))) | (10) |
0(1(5(4(5(x1))))) | → | 1(5(0(4(1(5(x1)))))) | (39) |
0(1(2(2(x1)))) | → | 1(3(2(0(2(x1))))) | (7) |
0(1(4(5(x1)))) | → | 5(0(4(1(5(x1))))) | (20) |
5(1(2(2(x1)))) | → | 1(3(5(2(2(x1))))) | (25) |
5(1(2(2(x1)))) | → | 4(1(3(2(2(5(x1)))))) | (30) |
0(1(2(2(x1)))) | → | 2(1(3(0(2(0(x1)))))) | (14) |
5(1(2(2(x1)))) | → | 5(1(0(4(2(2(x1)))))) | (31) |
0(1(2(2(x1)))) | → | 2(0(3(1(3(2(x1)))))) | (12) |
5(2(1(2(2(x1))))) | → | 2(1(3(5(2(2(x1)))))) | (45) |
0(1(4(5(x1)))) | → | 5(4(1(5(5(0(x1)))))) | (23) |
5(1(2(2(x1)))) | → | 1(0(2(2(5(x1))))) | (24) |
0(1(2(2(x1)))) | → | 1(5(0(4(2(2(x1)))))) | (11) |
0(1(2(2(x1)))) | → | 0(2(1(3(2(3(x1)))))) | (9) |
0(1(2(2(x1)))) | → | 2(1(1(0(4(2(x1)))))) | (13) |
0(5(1(2(2(x1))))) | → | 0(1(3(2(5(2(x1)))))) | (40) |
0(1(2(2(x1)))) | → | 1(3(0(2(2(x1))))) | (6) |
0(1(4(5(5(x1))))) | → | 5(0(4(0(1(5(x1)))))) | (38) |
5(2(4(0(5(x1))))) | → | 0(4(5(4(2(5(x1)))))) | (47) |
0(1(4(5(2(x1))))) | → | 1(0(4(2(0(5(x1)))))) | (37) |
3(3(1(2(2(x1))))) | → | 1(3(2(0(3(2(x1)))))) | (41) |
3(4(4(0(5(x1))))) | → | 3(5(4(5(0(4(x1)))))) | (42) |
5(2(4(0(5(x1))))) | → | 0(4(2(5(5(5(x1)))))) | (46) |
0(1(2(2(5(x1))))) | → | 1(5(0(4(2(2(x1)))))) | (35) |
5(1(2(2(x1)))) | → | 3(1(3(5(2(2(x1)))))) | (29) |
5(0(1(2(2(x1))))) | → | 1(3(2(0(5(2(x1)))))) | (43) |
0(1(2(2(x1)))) | → | 0(1(2(3(2(x1))))) | (2) |
0#(1(2(2(x1)))) | → | 0#(x1) | (68) |
5#(0(1(2(2(x1))))) | → | 0#(5(2(x1))) | (138) |
0#(1(2(2(2(x1))))) | → | 5#(2(x1)) | (96) |
5#(2(4(0(5(x1))))) | → | 5#(5(5(x1))) | (94) |
0#(1(4(5(2(x1))))) | → | 5#(x1) | (89) |
5#(1(2(2(x1)))) | → | 5#(x1) | (58) |
0#(1(2(2(x1)))) | → | 5#(x1) | (128) |
5#(2(4(0(5(x1))))) | → | 5#(5(x1)) | (81) |
0#(1(2(2(x1)))) | → | 0#(x1) | (68) |
0#(1(2(2(x1)))) | → | 0#(5(x1)) | (119) |
0#(1(2(2(x1)))) | → | 0#(x1) | (68) |
5#(1(2(2(x1)))) | → | 5#(x1) | (58) |
0#(1(4(5(2(x1))))) | → | 0#(5(x1)) | (118) |
0#(1(4(5(x1)))) | → | 5#(0(x1)) | (57) |
5#(0(1(2(2(x1))))) | → | 5#(2(x1)) | (115) |
0#(5(1(2(2(x1))))) | → | 5#(2(x1)) | (113) |
5#(1(2(2(x1)))) | → | 5#(x1) | (58) |
0#(1(4(5(x1)))) | → | 5#(0(x1)) | (57) |
0#(1(4(5(x1)))) | → | 5#(5(0(x1))) | (50) |
The dependency pairs are split into 1 component.
0#(1(4(5(x1)))) | → | 0#(x1) | (92) |
0#(1(4(5(x1)))) | → | 0#(x1) | (92) |
0#(1(4(5(5(x1))))) | → | 0#(1(5(x1))) | (117) |
[0#(x1)] | = |
|
||||||||||||
[1(x1)] | = |
|
||||||||||||
[4(x1)] | = |
|
||||||||||||
[5(x1)] | = |
|
||||||||||||
[3(x1)] | = |
|
||||||||||||
[0(x1)] | = |
|
||||||||||||
[3#(x1)] | = |
|
||||||||||||
[5#(x1)] | = |
|
||||||||||||
[2(x1)] | = |
|
0(1(2(2(x1)))) | → | 2(4(1(3(2(0(x1)))))) | (18) |
0(1(2(2(x1)))) | → | 1(0(3(2(2(x1))))) | (4) |
0(1(2(2(x1)))) | → | 2(1(3(3(2(0(x1)))))) | (15) |
0(1(2(2(x1)))) | → | 0(1(0(4(2(2(x1)))))) | (8) |
0(1(2(2(x1)))) | → | 0(1(0(2(2(x1))))) | (1) |
0(1(2(2(x1)))) | → | 0(2(2(1(3(x1))))) | (3) |
0(1(2(2(x1)))) | → | 2(1(5(3(0(2(x1)))))) | (16) |
0(1(4(5(x1)))) | → | 5(4(1(5(0(x1))))) | (21) |
0(1(2(4(5(x1))))) | → | 2(5(1(0(4(5(x1)))))) | (36) |
5(1(2(2(x1)))) | → | 1(5(2(3(2(x1))))) | (26) |
0(1(4(5(x1)))) | → | 1(5(0(4(1(x1))))) | (19) |
5(1(2(2(x1)))) | → | 5(1(2(0(4(2(x1)))))) | (32) |
0(1(2(2(x1)))) | → | 2(2(1(3(0(5(x1)))))) | (17) |
5(1(2(2(x1)))) | → | 1(5(0(2(2(3(x1)))))) | (27) |
0(1(2(2(2(x1))))) | → | 1(0(2(2(5(2(x1)))))) | (34) |
0(1(4(5(x1)))) | → | 1(1(5(0(4(1(x1)))))) | (22) |
5(1(2(2(x1)))) | → | 2(1(0(3(2(5(x1)))))) | (28) |
5(1(2(2(5(x1))))) | → | 1(5(2(3(2(5(x1)))))) | (44) |
0(1(2(2(x1)))) | → | 1(2(0(3(2(x1))))) | (5) |
0(1(1(4(5(x1))))) | → | 3(1(0(4(1(5(x1)))))) | (33) |
0(1(2(2(x1)))) | → | 1(2(1(0(4(2(x1)))))) | (10) |
0(1(5(4(5(x1))))) | → | 1(5(0(4(1(5(x1)))))) | (39) |
0(1(2(2(x1)))) | → | 1(3(2(0(2(x1))))) | (7) |
0(1(4(5(x1)))) | → | 5(0(4(1(5(x1))))) | (20) |
5(1(2(2(x1)))) | → | 1(3(5(2(2(x1))))) | (25) |
5(1(2(2(x1)))) | → | 4(1(3(2(2(5(x1)))))) | (30) |
0(1(2(2(x1)))) | → | 2(1(3(0(2(0(x1)))))) | (14) |
5(1(2(2(x1)))) | → | 5(1(0(4(2(2(x1)))))) | (31) |
0(1(2(2(x1)))) | → | 2(0(3(1(3(2(x1)))))) | (12) |
5(2(1(2(2(x1))))) | → | 2(1(3(5(2(2(x1)))))) | (45) |
0(1(4(5(x1)))) | → | 5(4(1(5(5(0(x1)))))) | (23) |
5(1(2(2(x1)))) | → | 1(0(2(2(5(x1))))) | (24) |
0(1(2(2(x1)))) | → | 1(5(0(4(2(2(x1)))))) | (11) |
0(1(2(2(x1)))) | → | 0(2(1(3(2(3(x1)))))) | (9) |
0(1(2(2(x1)))) | → | 2(1(1(0(4(2(x1)))))) | (13) |
0(5(1(2(2(x1))))) | → | 0(1(3(2(5(2(x1)))))) | (40) |
0(1(2(2(x1)))) | → | 1(3(0(2(2(x1))))) | (6) |
0(1(4(5(5(x1))))) | → | 5(0(4(0(1(5(x1)))))) | (38) |
5(2(4(0(5(x1))))) | → | 0(4(5(4(2(5(x1)))))) | (47) |
0(1(4(5(2(x1))))) | → | 1(0(4(2(0(5(x1)))))) | (37) |
3(3(1(2(2(x1))))) | → | 1(3(2(0(3(2(x1)))))) | (41) |
3(4(4(0(5(x1))))) | → | 3(5(4(5(0(4(x1)))))) | (42) |
5(2(4(0(5(x1))))) | → | 0(4(2(5(5(5(x1)))))) | (46) |
0(1(2(2(5(x1))))) | → | 1(5(0(4(2(2(x1)))))) | (35) |
5(1(2(2(x1)))) | → | 3(1(3(5(2(2(x1)))))) | (29) |
5(0(1(2(2(x1))))) | → | 1(3(2(0(5(2(x1)))))) | (43) |
0(1(2(2(x1)))) | → | 0(1(2(3(2(x1))))) | (2) |
0#(1(4(5(x1)))) | → | 0#(x1) | (92) |
0#(1(4(5(x1)))) | → | 0#(x1) | (92) |
0#(1(4(5(5(x1))))) | → | 0#(1(5(x1))) | (117) |
The dependency pairs are split into 0 components.