The rewrite relation of the following TRS is considered.
0(1(2(x1))) | → | 0(2(1(1(x1)))) | (1) |
0(1(2(x1))) | → | 0(2(1(3(x1)))) | (2) |
0(1(2(x1))) | → | 0(2(1(1(3(x1))))) | (3) |
0(1(2(x1))) | → | 0(2(4(1(1(x1))))) | (4) |
0(1(2(x1))) | → | 0(2(4(1(3(x1))))) | (5) |
0(3(2(x1))) | → | 0(2(1(3(x1)))) | (6) |
0(3(2(x1))) | → | 0(2(1(1(3(x1))))) | (7) |
0(3(2(x1))) | → | 0(0(2(1(1(3(x1)))))) | (8) |
0(1(1(2(x1)))) | → | 0(2(1(1(3(x1))))) | (9) |
0(1(2(2(x1)))) | → | 0(2(2(1(1(x1))))) | (10) |
0(1(2(2(x1)))) | → | 0(2(3(2(1(x1))))) | (11) |
0(1(3(2(x1)))) | → | 0(2(1(4(3(x1))))) | (12) |
0(1(3(2(x1)))) | → | 3(3(0(2(1(x1))))) | (13) |
0(1(3(2(x1)))) | → | 3(0(2(4(1(1(x1)))))) | (14) |
0(1(5(2(x1)))) | → | 5(0(2(1(1(x1))))) | (15) |
0(3(2(2(x1)))) | → | 0(0(2(3(2(x1))))) | (16) |
0(3(2(2(x1)))) | → | 0(0(4(2(3(2(x1)))))) | (17) |
2(0(3(2(x1)))) | → | 1(3(0(2(2(x1))))) | (18) |
3(0(3(2(x1)))) | → | 3(0(0(0(2(3(x1)))))) | (19) |
3(1(5(2(x1)))) | → | 0(2(1(5(3(x1))))) | (20) |
3(3(5(2(x1)))) | → | 3(0(2(1(5(3(x1)))))) | (21) |
4(5(2(2(x1)))) | → | 2(5(0(2(4(1(x1)))))) | (22) |
5(0(1(2(x1)))) | → | 0(2(1(3(4(5(x1)))))) | (23) |
5(0(2(2(x1)))) | → | 2(0(2(4(1(5(x1)))))) | (24) |
5(0(3(2(x1)))) | → | 3(0(2(1(4(5(x1)))))) | (25) |
5(1(2(2(x1)))) | → | 0(2(1(5(2(1(x1)))))) | (26) |
5(1(2(2(x1)))) | → | 2(1(5(2(1(1(x1)))))) | (27) |
0(1(2(4(2(x1))))) | → | 4(2(1(0(2(1(x1)))))) | (28) |
0(1(2(5(2(x1))))) | → | 2(0(2(1(5(4(x1)))))) | (29) |
0(1(5(1(2(x1))))) | → | 1(0(2(1(1(5(x1)))))) | (30) |
0(1(5(5(2(x1))))) | → | 0(2(1(5(5(1(x1)))))) | (31) |
0(5(0(1(2(x1))))) | → | 0(4(5(0(2(1(x1)))))) | (32) |
0(5(0(3(2(x1))))) | → | 0(5(0(0(2(3(x1)))))) | (33) |
0(5(5(2(2(x1))))) | → | 0(2(1(5(5(2(x1)))))) | (34) |
3(0(3(1(2(x1))))) | → | 1(3(3(0(2(3(x1)))))) | (35) |
3(0(3(4(2(x1))))) | → | 1(3(4(0(2(3(x1)))))) | (36) |
4(5(1(4(2(x1))))) | → | 2(4(4(4(1(5(x1)))))) | (37) |
5(0(1(3(2(x1))))) | → | 3(5(0(2(1(3(x1)))))) | (38) |
5(0(3(1(2(x1))))) | → | 0(2(1(4(3(5(x1)))))) | (39) |
5(0(4(2(2(x1))))) | → | 2(0(2(4(1(5(x1)))))) | (40) |
5(1(0(3(2(x1))))) | → | 0(4(3(5(1(2(x1)))))) | (41) |
5(1(0(3(2(x1))))) | → | 5(3(1(1(0(2(x1)))))) | (42) |
5(1(0(5(2(x1))))) | → | 3(5(5(0(2(1(x1)))))) | (43) |
5(1(0(5(2(x1))))) | → | 5(0(2(1(5(5(x1)))))) | (44) |
5(2(0(3(2(x1))))) | → | 0(2(5(2(3(1(x1)))))) | (45) |
There are 187 ruless (increase limit for explicit display).
The dependency pairs are split into 1 component.
3#(0(3(1(2(x1))))) | → | 3#(x1) | (223) |
0#(3(2(2(x1)))) | → | 0#(0(2(3(2(x1))))) | (139) |
0#(5(0(3(2(x1))))) | → | 0#(2(3(x1))) | (140) |
0#(1(1(2(x1)))) | → | 3#(x1) | (222) |
5#(1(0(3(2(x1))))) | → | 5#(1(2(x1))) | (137) |
2#(0(3(2(x1)))) | → | 3#(0(2(2(x1)))) | (132) |
5#(0(1(2(x1)))) | → | 3#(4(5(x1))) | (133) |
4#(5(1(4(2(x1))))) | → | 5#(x1) | (134) |
0#(5(0(3(2(x1))))) | → | 5#(0(0(2(3(x1))))) | (131) |
3#(0(3(1(2(x1))))) | → | 3#(3(0(2(3(x1))))) | (130) |
3#(0(3(1(2(x1))))) | → | 3#(0(2(3(x1)))) | (215) |
5#(0(3(2(x1)))) | → | 5#(x1) | (126) |
3#(3(5(2(x1)))) | → | 5#(3(x1)) | (123) |
0#(1(2(5(2(x1))))) | → | 5#(4(x1)) | (121) |
5#(0(3(1(2(x1))))) | → | 5#(x1) | (120) |
0#(3(2(2(x1)))) | → | 2#(3(2(x1))) | (71) |
5#(2(0(3(2(x1))))) | → | 3#(1(x1)) | (119) |
3#(0(3(4(2(x1))))) | → | 3#(x1) | (209) |
0#(3(2(x1))) | → | 3#(x1) | (75) |
5#(1(0(5(2(x1))))) | → | 5#(5(x1)) | (116) |
0#(3(2(2(x1)))) | → | 3#(2(x1)) | (169) |
5#(1(0(3(2(x1))))) | → | 4#(3(5(1(2(x1))))) | (113) |
0#(1(5(5(2(x1))))) | → | 5#(1(x1)) | (205) |
3#(0(3(4(2(x1))))) | → | 2#(3(x1)) | (204) |
0#(1(2(x1))) | → | 3#(x1) | (60) |
5#(1(0(3(2(x1))))) | → | 3#(5(1(2(x1)))) | (110) |
3#(0(3(1(2(x1))))) | → | 0#(2(3(x1))) | (203) |
0#(5(0(3(2(x1))))) | → | 2#(3(x1)) | (108) |
5#(1(0(3(2(x1))))) | → | 0#(2(x1)) | (202) |
0#(3(2(2(x1)))) | → | 0#(2(3(2(x1)))) | (107) |
0#(1(5(5(2(x1))))) | → | 5#(5(1(x1))) | (106) |
0#(5(5(2(2(x1))))) | → | 5#(5(2(x1))) | (200) |
3#(0(3(4(2(x1))))) | → | 3#(4(0(2(3(x1))))) | (104) |
5#(2(0(3(2(x1))))) | → | 2#(3(1(x1))) | (199) |
5#(0(3(1(2(x1))))) | → | 3#(5(x1)) | (195) |
0#(5(0(3(2(x1))))) | → | 0#(5(0(0(2(3(x1)))))) | (193) |
0#(1(2(5(2(x1))))) | → | 4#(x1) | (100) |
5#(0(1(2(x1)))) | → | 4#(5(x1)) | (191) |
2#(0(3(2(x1)))) | → | 0#(2(2(x1))) | (190) |
0#(5(0(3(2(x1))))) | → | 0#(0(2(3(x1)))) | (98) |
3#(0(3(2(x1)))) | → | 3#(0(0(0(2(3(x1)))))) | (97) |
0#(1(2(x1))) | → | 3#(x1) | (60) |
3#(0(3(1(2(x1))))) | → | 2#(3(x1)) | (185) |
5#(2(0(3(2(x1))))) | → | 5#(2(3(1(x1)))) | (94) |
0#(5(5(2(2(x1))))) | → | 5#(2(x1)) | (92) |
0#(5(0(3(2(x1))))) | → | 3#(x1) | (91) |
3#(0(3(2(x1)))) | → | 2#(3(x1)) | (182) |
3#(3(5(2(x1)))) | → | 3#(x1) | (89) |
5#(0(2(2(x1)))) | → | 5#(x1) | (90) |
2#(0(3(2(x1)))) | → | 2#(2(x1)) | (181) |
0#(3(2(2(x1)))) | → | 0#(4(2(3(2(x1))))) | (177) |
3#(0(3(2(x1)))) | → | 3#(x1) | (84) |
3#(0(3(4(2(x1))))) | → | 4#(0(2(3(x1)))) | (175) |
3#(0(3(4(2(x1))))) | → | 0#(2(3(x1))) | (82) |
0#(3(2(x1))) | → | 3#(x1) | (75) |
0#(3(2(2(x1)))) | → | 4#(2(3(2(x1)))) | (80) |
0#(1(5(1(2(x1))))) | → | 5#(x1) | (173) |
0#(3(2(x1))) | → | 3#(x1) | (75) |
0#(3(2(2(x1)))) | → | 3#(2(x1)) | (169) |
3#(0(3(2(x1)))) | → | 0#(0(0(2(3(x1))))) | (70) |
0#(3(2(2(x1)))) | → | 2#(3(2(x1))) | (71) |
5#(1(0(3(2(x1))))) | → | 0#(4(3(5(1(2(x1)))))) | (167) |
3#(0(3(2(x1)))) | → | 0#(0(2(3(x1)))) | (165) |
5#(2(0(3(2(x1))))) | → | 0#(2(5(2(3(1(x1)))))) | (164) |
0#(1(3(2(x1)))) | → | 3#(x1) | (65) |
0#(1(2(x1))) | → | 3#(x1) | (60) |
5#(0(3(1(2(x1))))) | → | 4#(3(5(x1))) | (61) |
0#(1(3(2(x1)))) | → | 4#(3(x1)) | (158) |
5#(0(1(2(x1)))) | → | 5#(x1) | (156) |
5#(1(0(5(2(x1))))) | → | 5#(x1) | (154) |
3#(1(5(2(x1)))) | → | 3#(x1) | (155) |
3#(0(3(2(x1)))) | → | 0#(2(3(x1))) | (57) |
3#(1(5(2(x1)))) | → | 5#(3(x1)) | (152) |
0#(3(2(2(x1)))) | → | 0#(0(4(2(3(2(x1)))))) | (150) |
5#(2(0(3(2(x1))))) | → | 2#(5(2(3(1(x1))))) | (52) |
5#(0(3(2(x1)))) | → | 4#(5(x1)) | (146) |
5#(0(1(3(2(x1))))) | → | 3#(x1) | (50) |
5#(0(4(2(2(x1))))) | → | 5#(x1) | (48) |
[0#(x1)] | = | x1 + 1 |
[1(x1)] | = | x1 + 0 |
[4(x1)] | = | x1 + 0 |
[5(x1)] | = | x1 + 0 |
[3(x1)] | = | x1 + 0 |
[2#(x1)] | = | x1 + 3 |
[4#(x1)] | = | x1 + 0 |
[0(x1)] | = | x1 + 0 |
[3#(x1)] | = | x1 + 1 |
[5#(x1)] | = | x1 + 1 |
[2(x1)] | = | x1 + 2 |
2(0(3(2(x1)))) | → | 1(3(0(2(2(x1))))) | (18) |
0(1(2(x1))) | → | 0(2(4(1(1(x1))))) | (4) |
0(1(5(2(x1)))) | → | 5(0(2(1(1(x1))))) | (15) |
0(3(2(x1))) | → | 0(0(2(1(1(3(x1)))))) | (8) |
0(1(2(x1))) | → | 0(2(1(1(x1)))) | (1) |
0(1(2(x1))) | → | 0(2(1(1(3(x1))))) | (3) |
0(3(2(2(x1)))) | → | 0(0(2(3(2(x1))))) | (16) |
3(3(5(2(x1)))) | → | 3(0(2(1(5(3(x1)))))) | (21) |
3(0(3(4(2(x1))))) | → | 1(3(4(0(2(3(x1)))))) | (36) |
5(1(2(2(x1)))) | → | 0(2(1(5(2(1(x1)))))) | (26) |
3(0(3(2(x1)))) | → | 3(0(0(0(2(3(x1)))))) | (19) |
0(5(0(1(2(x1))))) | → | 0(4(5(0(2(1(x1)))))) | (32) |
0(3(2(2(x1)))) | → | 0(0(4(2(3(2(x1)))))) | (17) |
5(1(2(2(x1)))) | → | 2(1(5(2(1(1(x1)))))) | (27) |
0(5(5(2(2(x1))))) | → | 0(2(1(5(5(2(x1)))))) | (34) |
4(5(2(2(x1)))) | → | 2(5(0(2(4(1(x1)))))) | (22) |
0(1(2(4(2(x1))))) | → | 4(2(1(0(2(1(x1)))))) | (28) |
5(1(0(5(2(x1))))) | → | 5(0(2(1(5(5(x1)))))) | (44) |
0(1(2(x1))) | → | 0(2(4(1(3(x1))))) | (5) |
0(5(0(3(2(x1))))) | → | 0(5(0(0(2(3(x1)))))) | (33) |
0(1(2(2(x1)))) | → | 0(2(2(1(1(x1))))) | (10) |
5(0(3(1(2(x1))))) | → | 0(2(1(4(3(5(x1)))))) | (39) |
0(3(2(x1))) | → | 0(2(1(1(3(x1))))) | (7) |
3(1(5(2(x1)))) | → | 0(2(1(5(3(x1))))) | (20) |
5(0(3(2(x1)))) | → | 3(0(2(1(4(5(x1)))))) | (25) |
0(1(5(1(2(x1))))) | → | 1(0(2(1(1(5(x1)))))) | (30) |
0(1(3(2(x1)))) | → | 3(0(2(4(1(1(x1)))))) | (14) |
0(1(5(5(2(x1))))) | → | 0(2(1(5(5(1(x1)))))) | (31) |
0(1(3(2(x1)))) | → | 0(2(1(4(3(x1))))) | (12) |
5(2(0(3(2(x1))))) | → | 0(2(5(2(3(1(x1)))))) | (45) |
5(0(1(2(x1)))) | → | 0(2(1(3(4(5(x1)))))) | (23) |
5(0(2(2(x1)))) | → | 2(0(2(4(1(5(x1)))))) | (24) |
0(1(2(2(x1)))) | → | 0(2(3(2(1(x1))))) | (11) |
0(1(1(2(x1)))) | → | 0(2(1(1(3(x1))))) | (9) |
0(1(3(2(x1)))) | → | 3(3(0(2(1(x1))))) | (13) |
5(0(4(2(2(x1))))) | → | 2(0(2(4(1(5(x1)))))) | (40) |
0(3(2(x1))) | → | 0(2(1(3(x1)))) | (6) |
5(0(1(3(2(x1))))) | → | 3(5(0(2(1(3(x1)))))) | (38) |
4(5(1(4(2(x1))))) | → | 2(4(4(4(1(5(x1)))))) | (37) |
5(1(0(3(2(x1))))) | → | 0(4(3(5(1(2(x1)))))) | (41) |
5(1(0(3(2(x1))))) | → | 5(3(1(1(0(2(x1)))))) | (42) |
3(0(3(1(2(x1))))) | → | 1(3(3(0(2(3(x1)))))) | (35) |
0(1(2(5(2(x1))))) | → | 2(0(2(1(5(4(x1)))))) | (29) |
5(1(0(5(2(x1))))) | → | 3(5(5(0(2(1(x1)))))) | (43) |
0(1(2(x1))) | → | 0(2(1(3(x1)))) | (2) |
3#(0(3(1(2(x1))))) | → | 3#(x1) | (223) |
0#(1(1(2(x1)))) | → | 3#(x1) | (222) |
5#(0(1(2(x1)))) | → | 3#(4(5(x1))) | (133) |
4#(5(1(4(2(x1))))) | → | 5#(x1) | (134) |
5#(0(3(2(x1)))) | → | 5#(x1) | (126) |
3#(3(5(2(x1)))) | → | 5#(3(x1)) | (123) |
0#(1(2(5(2(x1))))) | → | 5#(4(x1)) | (121) |
5#(0(3(1(2(x1))))) | → | 5#(x1) | (120) |
5#(2(0(3(2(x1))))) | → | 3#(1(x1)) | (119) |
3#(0(3(4(2(x1))))) | → | 3#(x1) | (209) |
0#(3(2(x1))) | → | 3#(x1) | (75) |
5#(1(0(5(2(x1))))) | → | 5#(5(x1)) | (116) |
0#(3(2(2(x1)))) | → | 3#(2(x1)) | (169) |
5#(1(0(3(2(x1))))) | → | 4#(3(5(1(2(x1))))) | (113) |
0#(1(5(5(2(x1))))) | → | 5#(1(x1)) | (205) |
0#(1(2(x1))) | → | 3#(x1) | (60) |
0#(1(5(5(2(x1))))) | → | 5#(5(1(x1))) | (106) |
0#(5(5(2(2(x1))))) | → | 5#(5(2(x1))) | (200) |
5#(2(0(3(2(x1))))) | → | 2#(3(1(x1))) | (199) |
5#(0(3(1(2(x1))))) | → | 3#(5(x1)) | (195) |
0#(1(2(5(2(x1))))) | → | 4#(x1) | (100) |
5#(0(1(2(x1)))) | → | 4#(5(x1)) | (191) |
0#(1(2(x1))) | → | 3#(x1) | (60) |
5#(2(0(3(2(x1))))) | → | 5#(2(3(1(x1)))) | (94) |
0#(5(5(2(2(x1))))) | → | 5#(2(x1)) | (92) |
0#(5(0(3(2(x1))))) | → | 3#(x1) | (91) |
3#(3(5(2(x1)))) | → | 3#(x1) | (89) |
5#(0(2(2(x1)))) | → | 5#(x1) | (90) |
3#(0(3(2(x1)))) | → | 3#(x1) | (84) |
3#(0(3(4(2(x1))))) | → | 4#(0(2(3(x1)))) | (175) |
0#(3(2(x1))) | → | 3#(x1) | (75) |
0#(3(2(2(x1)))) | → | 4#(2(3(2(x1)))) | (80) |
0#(1(5(1(2(x1))))) | → | 5#(x1) | (173) |
0#(3(2(x1))) | → | 3#(x1) | (75) |
0#(3(2(2(x1)))) | → | 3#(2(x1)) | (169) |
0#(1(3(2(x1)))) | → | 3#(x1) | (65) |
0#(1(2(x1))) | → | 3#(x1) | (60) |
5#(0(3(1(2(x1))))) | → | 4#(3(5(x1))) | (61) |
0#(1(3(2(x1)))) | → | 4#(3(x1)) | (158) |
5#(0(1(2(x1)))) | → | 5#(x1) | (156) |
5#(1(0(5(2(x1))))) | → | 5#(x1) | (154) |
3#(1(5(2(x1)))) | → | 3#(x1) | (155) |
3#(1(5(2(x1)))) | → | 5#(3(x1)) | (152) |
5#(0(3(2(x1)))) | → | 4#(5(x1)) | (146) |
5#(0(1(3(2(x1))))) | → | 3#(x1) | (50) |
5#(0(4(2(2(x1))))) | → | 5#(x1) | (48) |
The dependency pairs are split into 1 component.
2#(0(3(2(x1)))) | → | 2#(2(x1)) | (181) |
2#(0(3(2(x1)))) | → | 0#(2(2(x1))) | (190) |
2#(0(3(2(x1)))) | → | 3#(0(2(2(x1)))) | (132) |
0#(3(2(2(x1)))) | → | 2#(3(2(x1))) | (71) |
0#(3(2(2(x1)))) | → | 0#(2(3(2(x1)))) | (107) |
0#(3(2(2(x1)))) | → | 0#(0(2(3(2(x1))))) | (139) |
3#(0(3(4(2(x1))))) | → | 2#(3(x1)) | (204) |
3#(0(3(4(2(x1))))) | → | 0#(2(3(x1))) | (82) |
3#(0(3(4(2(x1))))) | → | 3#(4(0(2(3(x1))))) | (104) |
3#(0(3(2(x1)))) | → | 2#(3(x1)) | (182) |
3#(0(3(2(x1)))) | → | 0#(2(3(x1))) | (57) |
3#(0(3(2(x1)))) | → | 0#(0(2(3(x1)))) | (165) |
3#(0(3(2(x1)))) | → | 0#(0(0(2(3(x1))))) | (70) |
3#(0(3(2(x1)))) | → | 3#(0(0(0(2(3(x1)))))) | (97) |
0#(3(2(2(x1)))) | → | 2#(3(2(x1))) | (71) |
0#(3(2(2(x1)))) | → | 0#(4(2(3(2(x1))))) | (177) |
0#(3(2(2(x1)))) | → | 0#(0(4(2(3(2(x1)))))) | (150) |
0#(5(0(3(2(x1))))) | → | 2#(3(x1)) | (108) |
0#(5(0(3(2(x1))))) | → | 0#(2(3(x1))) | (140) |
0#(5(0(3(2(x1))))) | → | 0#(0(2(3(x1)))) | (98) |
0#(5(0(3(2(x1))))) | → | 5#(0(0(2(3(x1))))) | (131) |
0#(5(0(3(2(x1))))) | → | 0#(5(0(0(2(3(x1)))))) | (193) |
5#(2(0(3(2(x1))))) | → | 2#(5(2(3(1(x1))))) | (52) |
5#(2(0(3(2(x1))))) | → | 0#(2(5(2(3(1(x1)))))) | (164) |
5#(1(0(3(2(x1))))) | → | 5#(1(2(x1))) | (137) |
5#(1(0(3(2(x1))))) | → | 3#(5(1(2(x1)))) | (110) |
5#(1(0(3(2(x1))))) | → | 0#(4(3(5(1(2(x1)))))) | (167) |
5#(1(0(3(2(x1))))) | → | 0#(2(x1)) | (202) |
3#(0(3(1(2(x1))))) | → | 2#(3(x1)) | (185) |
3#(0(3(1(2(x1))))) | → | 0#(2(3(x1))) | (203) |
3#(0(3(1(2(x1))))) | → | 3#(0(2(3(x1)))) | (215) |
3#(0(3(1(2(x1))))) | → | 3#(3(0(2(3(x1))))) | (130) |
[0#(x1)] | = | 53064 |
[1(x1)] | = | 1 |
[4(x1)] | = | 1 |
[5(x1)] | = | 26533 |
[3(x1)] | = | 26533 |
[2#(x1)] | = | x1 + 0 |
[4#(x1)] | = | 0 |
[0(x1)] | = | x1 + 26532 |
[3#(x1)] | = | 53064 |
[5#(x1)] | = | 53064 |
[2(x1)] | = | 1 |
2(0(3(2(x1)))) | → | 1(3(0(2(2(x1))))) | (18) |
0(1(2(x1))) | → | 0(2(4(1(1(x1))))) | (4) |
0(1(5(2(x1)))) | → | 5(0(2(1(1(x1))))) | (15) |
0(3(2(x1))) | → | 0(0(2(1(1(3(x1)))))) | (8) |
0(1(2(x1))) | → | 0(2(1(1(x1)))) | (1) |
0(1(2(x1))) | → | 0(2(1(1(3(x1))))) | (3) |
0(3(2(2(x1)))) | → | 0(0(2(3(2(x1))))) | (16) |
3(3(5(2(x1)))) | → | 3(0(2(1(5(3(x1)))))) | (21) |
3(0(3(4(2(x1))))) | → | 1(3(4(0(2(3(x1)))))) | (36) |
5(1(2(2(x1)))) | → | 0(2(1(5(2(1(x1)))))) | (26) |
3(0(3(2(x1)))) | → | 3(0(0(0(2(3(x1)))))) | (19) |
0(5(0(1(2(x1))))) | → | 0(4(5(0(2(1(x1)))))) | (32) |
0(3(2(2(x1)))) | → | 0(0(4(2(3(2(x1)))))) | (17) |
5(1(2(2(x1)))) | → | 2(1(5(2(1(1(x1)))))) | (27) |
0(5(5(2(2(x1))))) | → | 0(2(1(5(5(2(x1)))))) | (34) |
4(5(2(2(x1)))) | → | 2(5(0(2(4(1(x1)))))) | (22) |
0(1(2(4(2(x1))))) | → | 4(2(1(0(2(1(x1)))))) | (28) |
5(1(0(5(2(x1))))) | → | 5(0(2(1(5(5(x1)))))) | (44) |
0(1(2(x1))) | → | 0(2(4(1(3(x1))))) | (5) |
0(5(0(3(2(x1))))) | → | 0(5(0(0(2(3(x1)))))) | (33) |
0(1(2(2(x1)))) | → | 0(2(2(1(1(x1))))) | (10) |
5(0(3(1(2(x1))))) | → | 0(2(1(4(3(5(x1)))))) | (39) |
0(3(2(x1))) | → | 0(2(1(1(3(x1))))) | (7) |
3(1(5(2(x1)))) | → | 0(2(1(5(3(x1))))) | (20) |
5(0(3(2(x1)))) | → | 3(0(2(1(4(5(x1)))))) | (25) |
0(1(5(1(2(x1))))) | → | 1(0(2(1(1(5(x1)))))) | (30) |
0(1(3(2(x1)))) | → | 3(0(2(4(1(1(x1)))))) | (14) |
0(1(5(5(2(x1))))) | → | 0(2(1(5(5(1(x1)))))) | (31) |
0(1(3(2(x1)))) | → | 0(2(1(4(3(x1))))) | (12) |
5(2(0(3(2(x1))))) | → | 0(2(5(2(3(1(x1)))))) | (45) |
5(0(1(2(x1)))) | → | 0(2(1(3(4(5(x1)))))) | (23) |
5(0(2(2(x1)))) | → | 2(0(2(4(1(5(x1)))))) | (24) |
0(1(2(2(x1)))) | → | 0(2(3(2(1(x1))))) | (11) |
0(1(1(2(x1)))) | → | 0(2(1(1(3(x1))))) | (9) |
0(1(3(2(x1)))) | → | 3(3(0(2(1(x1))))) | (13) |
5(0(4(2(2(x1))))) | → | 2(0(2(4(1(5(x1)))))) | (40) |
0(3(2(x1))) | → | 0(2(1(3(x1)))) | (6) |
5(0(1(3(2(x1))))) | → | 3(5(0(2(1(3(x1)))))) | (38) |
4(5(1(4(2(x1))))) | → | 2(4(4(4(1(5(x1)))))) | (37) |
5(1(0(3(2(x1))))) | → | 0(4(3(5(1(2(x1)))))) | (41) |
5(1(0(3(2(x1))))) | → | 5(3(1(1(0(2(x1)))))) | (42) |
3(0(3(1(2(x1))))) | → | 1(3(3(0(2(3(x1)))))) | (35) |
0(1(2(5(2(x1))))) | → | 2(0(2(1(5(4(x1)))))) | (29) |
5(1(0(5(2(x1))))) | → | 3(5(5(0(2(1(x1)))))) | (43) |
0(1(2(x1))) | → | 0(2(1(3(x1)))) | (2) |
2#(0(3(2(x1)))) | → | 2#(2(x1)) | (181) |
2#(0(3(2(x1)))) | → | 0#(2(2(x1))) | (190) |
2#(0(3(2(x1)))) | → | 3#(0(2(2(x1)))) | (132) |
0#(3(2(2(x1)))) | → | 2#(3(2(x1))) | (71) |
3#(0(3(4(2(x1))))) | → | 2#(3(x1)) | (204) |
3#(0(3(2(x1)))) | → | 2#(3(x1)) | (182) |
0#(3(2(2(x1)))) | → | 2#(3(2(x1))) | (71) |
0#(5(0(3(2(x1))))) | → | 2#(3(x1)) | (108) |
5#(2(0(3(2(x1))))) | → | 2#(5(2(3(1(x1))))) | (52) |
3#(0(3(1(2(x1))))) | → | 2#(3(x1)) | (185) |
The dependency pairs are split into 1 component.
0#(3(2(2(x1)))) | → | 0#(2(3(2(x1)))) | (107) |
0#(3(2(2(x1)))) | → | 0#(0(2(3(2(x1))))) | (139) |
3#(0(3(4(2(x1))))) | → | 0#(2(3(x1))) | (82) |
3#(0(3(4(2(x1))))) | → | 3#(4(0(2(3(x1))))) | (104) |
3#(0(3(2(x1)))) | → | 0#(2(3(x1))) | (57) |
3#(0(3(2(x1)))) | → | 0#(0(2(3(x1)))) | (165) |
3#(0(3(2(x1)))) | → | 0#(0(0(2(3(x1))))) | (70) |
3#(0(3(2(x1)))) | → | 3#(0(0(0(2(3(x1)))))) | (97) |
0#(3(2(2(x1)))) | → | 0#(4(2(3(2(x1))))) | (177) |
0#(3(2(2(x1)))) | → | 0#(0(4(2(3(2(x1)))))) | (150) |
0#(5(0(3(2(x1))))) | → | 0#(2(3(x1))) | (140) |
0#(5(0(3(2(x1))))) | → | 0#(0(2(3(x1)))) | (98) |
0#(5(0(3(2(x1))))) | → | 5#(0(0(2(3(x1))))) | (131) |
0#(5(0(3(2(x1))))) | → | 0#(5(0(0(2(3(x1)))))) | (193) |
5#(2(0(3(2(x1))))) | → | 0#(2(5(2(3(1(x1)))))) | (164) |
5#(1(0(3(2(x1))))) | → | 5#(1(2(x1))) | (137) |
5#(1(0(3(2(x1))))) | → | 3#(5(1(2(x1)))) | (110) |
5#(1(0(3(2(x1))))) | → | 0#(4(3(5(1(2(x1)))))) | (167) |
5#(1(0(3(2(x1))))) | → | 0#(2(x1)) | (202) |
3#(0(3(1(2(x1))))) | → | 0#(2(3(x1))) | (203) |
3#(0(3(1(2(x1))))) | → | 3#(0(2(3(x1)))) | (215) |
3#(0(3(1(2(x1))))) | → | 3#(3(0(2(3(x1))))) | (130) |
[0#(x1)] | = | x1 + 53064 |
[1(x1)] | = | x1 + 0 |
[4(x1)] | = | 1 |
[5(x1)] | = | 28254 |
[3(x1)] | = | 1 |
[2#(x1)] | = | 0 |
[4#(x1)] | = | 0 |
[0(x1)] | = | x1 + 0 |
[3#(x1)] | = | 53066 |
[5#(x1)] | = | x1 + 53065 |
[2(x1)] | = | 1 |
2(0(3(2(x1)))) | → | 1(3(0(2(2(x1))))) | (18) |
0(1(2(x1))) | → | 0(2(4(1(1(x1))))) | (4) |
0(1(5(2(x1)))) | → | 5(0(2(1(1(x1))))) | (15) |
0(3(2(x1))) | → | 0(0(2(1(1(3(x1)))))) | (8) |
0(1(2(x1))) | → | 0(2(1(1(x1)))) | (1) |
0(1(2(x1))) | → | 0(2(1(1(3(x1))))) | (3) |
0(3(2(2(x1)))) | → | 0(0(2(3(2(x1))))) | (16) |
3(3(5(2(x1)))) | → | 3(0(2(1(5(3(x1)))))) | (21) |
3(0(3(4(2(x1))))) | → | 1(3(4(0(2(3(x1)))))) | (36) |
5(1(2(2(x1)))) | → | 0(2(1(5(2(1(x1)))))) | (26) |
3(0(3(2(x1)))) | → | 3(0(0(0(2(3(x1)))))) | (19) |
0(5(0(1(2(x1))))) | → | 0(4(5(0(2(1(x1)))))) | (32) |
0(3(2(2(x1)))) | → | 0(0(4(2(3(2(x1)))))) | (17) |
5(1(2(2(x1)))) | → | 2(1(5(2(1(1(x1)))))) | (27) |
0(5(5(2(2(x1))))) | → | 0(2(1(5(5(2(x1)))))) | (34) |
4(5(2(2(x1)))) | → | 2(5(0(2(4(1(x1)))))) | (22) |
0(1(2(4(2(x1))))) | → | 4(2(1(0(2(1(x1)))))) | (28) |
5(1(0(5(2(x1))))) | → | 5(0(2(1(5(5(x1)))))) | (44) |
0(1(2(x1))) | → | 0(2(4(1(3(x1))))) | (5) |
0(5(0(3(2(x1))))) | → | 0(5(0(0(2(3(x1)))))) | (33) |
0(1(2(2(x1)))) | → | 0(2(2(1(1(x1))))) | (10) |
5(0(3(1(2(x1))))) | → | 0(2(1(4(3(5(x1)))))) | (39) |
0(3(2(x1))) | → | 0(2(1(1(3(x1))))) | (7) |
3(1(5(2(x1)))) | → | 0(2(1(5(3(x1))))) | (20) |
5(0(3(2(x1)))) | → | 3(0(2(1(4(5(x1)))))) | (25) |
0(1(5(1(2(x1))))) | → | 1(0(2(1(1(5(x1)))))) | (30) |
0(1(3(2(x1)))) | → | 3(0(2(4(1(1(x1)))))) | (14) |
0(1(5(5(2(x1))))) | → | 0(2(1(5(5(1(x1)))))) | (31) |
0(1(3(2(x1)))) | → | 0(2(1(4(3(x1))))) | (12) |
5(2(0(3(2(x1))))) | → | 0(2(5(2(3(1(x1)))))) | (45) |
5(0(1(2(x1)))) | → | 0(2(1(3(4(5(x1)))))) | (23) |
5(0(2(2(x1)))) | → | 2(0(2(4(1(5(x1)))))) | (24) |
0(1(2(2(x1)))) | → | 0(2(3(2(1(x1))))) | (11) |
0(1(1(2(x1)))) | → | 0(2(1(1(3(x1))))) | (9) |
0(1(3(2(x1)))) | → | 3(3(0(2(1(x1))))) | (13) |
5(0(4(2(2(x1))))) | → | 2(0(2(4(1(5(x1)))))) | (40) |
0(3(2(x1))) | → | 0(2(1(3(x1)))) | (6) |
5(0(1(3(2(x1))))) | → | 3(5(0(2(1(3(x1)))))) | (38) |
4(5(1(4(2(x1))))) | → | 2(4(4(4(1(5(x1)))))) | (37) |
5(1(0(3(2(x1))))) | → | 0(4(3(5(1(2(x1)))))) | (41) |
5(1(0(3(2(x1))))) | → | 5(3(1(1(0(2(x1)))))) | (42) |
3(0(3(1(2(x1))))) | → | 1(3(3(0(2(3(x1)))))) | (35) |
0(1(2(5(2(x1))))) | → | 2(0(2(1(5(4(x1)))))) | (29) |
5(1(0(5(2(x1))))) | → | 3(5(5(0(2(1(x1)))))) | (43) |
0(1(2(x1))) | → | 0(2(1(3(x1)))) | (2) |
3#(0(3(4(2(x1))))) | → | 0#(2(3(x1))) | (82) |
3#(0(3(2(x1)))) | → | 0#(2(3(x1))) | (57) |
3#(0(3(2(x1)))) | → | 0#(0(2(3(x1)))) | (165) |
3#(0(3(2(x1)))) | → | 0#(0(0(2(3(x1))))) | (70) |
0#(5(0(3(2(x1))))) | → | 0#(2(3(x1))) | (140) |
0#(5(0(3(2(x1))))) | → | 0#(0(2(3(x1)))) | (98) |
0#(5(0(3(2(x1))))) | → | 5#(0(0(2(3(x1))))) | (131) |
5#(2(0(3(2(x1))))) | → | 0#(2(5(2(3(1(x1)))))) | (164) |
5#(1(0(3(2(x1))))) | → | 0#(4(3(5(1(2(x1)))))) | (167) |
5#(1(0(3(2(x1))))) | → | 0#(2(x1)) | (202) |
3#(0(3(1(2(x1))))) | → | 0#(2(3(x1))) | (203) |
The dependency pairs are split into 3 components.
0#(3(2(2(x1)))) | → | 0#(2(3(2(x1)))) | (107) |
0#(3(2(2(x1)))) | → | 0#(0(2(3(2(x1))))) | (139) |
0#(3(2(2(x1)))) | → | 0#(4(2(3(2(x1))))) | (177) |
0#(3(2(2(x1)))) | → | 0#(0(4(2(3(2(x1)))))) | (150) |
0#(5(0(3(2(x1))))) | → | 0#(5(0(0(2(3(x1)))))) | (193) |
[0#(x1)] | = | x1 + 53064 |
[1(x1)] | = | 1 |
[4(x1)] | = | 1 |
[5(x1)] | = | 28117 |
[3(x1)] | = | 28117 |
[2#(x1)] | = | 0 |
[4#(x1)] | = | 0 |
[0(x1)] | = | x1 + 28116 |
[3#(x1)] | = | 53066 |
[5#(x1)] | = | x1 + 53065 |
[2(x1)] | = | 1 |
2(0(3(2(x1)))) | → | 1(3(0(2(2(x1))))) | (18) |
0(1(2(x1))) | → | 0(2(4(1(1(x1))))) | (4) |
0(1(5(2(x1)))) | → | 5(0(2(1(1(x1))))) | (15) |
0(3(2(x1))) | → | 0(0(2(1(1(3(x1)))))) | (8) |
0(1(2(x1))) | → | 0(2(1(1(x1)))) | (1) |
0(1(2(x1))) | → | 0(2(1(1(3(x1))))) | (3) |
0(3(2(2(x1)))) | → | 0(0(2(3(2(x1))))) | (16) |
3(3(5(2(x1)))) | → | 3(0(2(1(5(3(x1)))))) | (21) |
3(0(3(4(2(x1))))) | → | 1(3(4(0(2(3(x1)))))) | (36) |
5(1(2(2(x1)))) | → | 0(2(1(5(2(1(x1)))))) | (26) |
3(0(3(2(x1)))) | → | 3(0(0(0(2(3(x1)))))) | (19) |
0(5(0(1(2(x1))))) | → | 0(4(5(0(2(1(x1)))))) | (32) |
0(3(2(2(x1)))) | → | 0(0(4(2(3(2(x1)))))) | (17) |
5(1(2(2(x1)))) | → | 2(1(5(2(1(1(x1)))))) | (27) |
0(5(5(2(2(x1))))) | → | 0(2(1(5(5(2(x1)))))) | (34) |
4(5(2(2(x1)))) | → | 2(5(0(2(4(1(x1)))))) | (22) |
0(1(2(4(2(x1))))) | → | 4(2(1(0(2(1(x1)))))) | (28) |
5(1(0(5(2(x1))))) | → | 5(0(2(1(5(5(x1)))))) | (44) |
0(1(2(x1))) | → | 0(2(4(1(3(x1))))) | (5) |
0(5(0(3(2(x1))))) | → | 0(5(0(0(2(3(x1)))))) | (33) |
0(1(2(2(x1)))) | → | 0(2(2(1(1(x1))))) | (10) |
5(0(3(1(2(x1))))) | → | 0(2(1(4(3(5(x1)))))) | (39) |
0(3(2(x1))) | → | 0(2(1(1(3(x1))))) | (7) |
3(1(5(2(x1)))) | → | 0(2(1(5(3(x1))))) | (20) |
5(0(3(2(x1)))) | → | 3(0(2(1(4(5(x1)))))) | (25) |
0(1(5(1(2(x1))))) | → | 1(0(2(1(1(5(x1)))))) | (30) |
0(1(3(2(x1)))) | → | 3(0(2(4(1(1(x1)))))) | (14) |
0(1(5(5(2(x1))))) | → | 0(2(1(5(5(1(x1)))))) | (31) |
0(1(3(2(x1)))) | → | 0(2(1(4(3(x1))))) | (12) |
5(2(0(3(2(x1))))) | → | 0(2(5(2(3(1(x1)))))) | (45) |
5(0(1(2(x1)))) | → | 0(2(1(3(4(5(x1)))))) | (23) |
5(0(2(2(x1)))) | → | 2(0(2(4(1(5(x1)))))) | (24) |
0(1(2(2(x1)))) | → | 0(2(3(2(1(x1))))) | (11) |
0(1(1(2(x1)))) | → | 0(2(1(1(3(x1))))) | (9) |
0(1(3(2(x1)))) | → | 3(3(0(2(1(x1))))) | (13) |
5(0(4(2(2(x1))))) | → | 2(0(2(4(1(5(x1)))))) | (40) |
0(3(2(x1))) | → | 0(2(1(3(x1)))) | (6) |
5(0(1(3(2(x1))))) | → | 3(5(0(2(1(3(x1)))))) | (38) |
4(5(1(4(2(x1))))) | → | 2(4(4(4(1(5(x1)))))) | (37) |
5(1(0(3(2(x1))))) | → | 0(4(3(5(1(2(x1)))))) | (41) |
5(1(0(3(2(x1))))) | → | 5(3(1(1(0(2(x1)))))) | (42) |
3(0(3(1(2(x1))))) | → | 1(3(3(0(2(3(x1)))))) | (35) |
0(1(2(5(2(x1))))) | → | 2(0(2(1(5(4(x1)))))) | (29) |
5(1(0(5(2(x1))))) | → | 3(5(5(0(2(1(x1)))))) | (43) |
0(1(2(x1))) | → | 0(2(1(3(x1)))) | (2) |
0#(3(2(2(x1)))) | → | 0#(2(3(2(x1)))) | (107) |
0#(3(2(2(x1)))) | → | 0#(4(2(3(2(x1))))) | (177) |
The dependency pairs are split into 1 component.
0#(3(2(2(x1)))) | → | 0#(0(2(3(2(x1))))) | (139) |
0#(3(2(2(x1)))) | → | 0#(0(4(2(3(2(x1)))))) | (150) |
0#(5(0(3(2(x1))))) | → | 0#(5(0(0(2(3(x1)))))) | (193) |
π(0#) | = | 1 |
π(1) | = | 1 |
π(2#) | = | 1 |
π(4#) | = | 1 |
π(0) | = | 1 |
prec(4) | = | 1 | status(4) | = | [] | list-extension(4) | = | Lex | ||
prec(5) | = | 1 | status(5) | = | [] | list-extension(5) | = | Lex | ||
prec(3) | = | 2 | status(3) | = | [] | list-extension(3) | = | Lex | ||
prec(3#) | = | 0 | status(3#) | = | [] | list-extension(3#) | = | Lex | ||
prec(5#) | = | 0 | status(5#) | = | [] | list-extension(5#) | = | Lex | ||
prec(2) | = | 2 | status(2) | = | [] | list-extension(2) | = | Lex |
[4(x1)] | = | x1 + 0 |
[5(x1)] | = | 2 |
[3(x1)] | = | 1 |
[3#(x1)] | = | 1 |
[5#(x1)] | = | 1 |
[2(x1)] | = | 1 |
2(0(3(2(x1)))) | → | 1(3(0(2(2(x1))))) | (18) |
0(1(2(x1))) | → | 0(2(4(1(1(x1))))) | (4) |
0(1(5(2(x1)))) | → | 5(0(2(1(1(x1))))) | (15) |
0(3(2(x1))) | → | 0(0(2(1(1(3(x1)))))) | (8) |
0(1(2(x1))) | → | 0(2(1(1(x1)))) | (1) |
0(1(2(x1))) | → | 0(2(1(1(3(x1))))) | (3) |
0(3(2(2(x1)))) | → | 0(0(2(3(2(x1))))) | (16) |
3(3(5(2(x1)))) | → | 3(0(2(1(5(3(x1)))))) | (21) |
3(0(3(4(2(x1))))) | → | 1(3(4(0(2(3(x1)))))) | (36) |
5(1(2(2(x1)))) | → | 0(2(1(5(2(1(x1)))))) | (26) |
3(0(3(2(x1)))) | → | 3(0(0(0(2(3(x1)))))) | (19) |
0(5(0(1(2(x1))))) | → | 0(4(5(0(2(1(x1)))))) | (32) |
0(3(2(2(x1)))) | → | 0(0(4(2(3(2(x1)))))) | (17) |
5(1(2(2(x1)))) | → | 2(1(5(2(1(1(x1)))))) | (27) |
0(5(5(2(2(x1))))) | → | 0(2(1(5(5(2(x1)))))) | (34) |
4(5(2(2(x1)))) | → | 2(5(0(2(4(1(x1)))))) | (22) |
0(1(2(4(2(x1))))) | → | 4(2(1(0(2(1(x1)))))) | (28) |
5(1(0(5(2(x1))))) | → | 5(0(2(1(5(5(x1)))))) | (44) |
0(1(2(x1))) | → | 0(2(4(1(3(x1))))) | (5) |
0(5(0(3(2(x1))))) | → | 0(5(0(0(2(3(x1)))))) | (33) |
0(1(2(2(x1)))) | → | 0(2(2(1(1(x1))))) | (10) |
5(0(3(1(2(x1))))) | → | 0(2(1(4(3(5(x1)))))) | (39) |
0(3(2(x1))) | → | 0(2(1(1(3(x1))))) | (7) |
3(1(5(2(x1)))) | → | 0(2(1(5(3(x1))))) | (20) |
5(0(3(2(x1)))) | → | 3(0(2(1(4(5(x1)))))) | (25) |
0(1(5(1(2(x1))))) | → | 1(0(2(1(1(5(x1)))))) | (30) |
0(1(3(2(x1)))) | → | 3(0(2(4(1(1(x1)))))) | (14) |
0(1(5(5(2(x1))))) | → | 0(2(1(5(5(1(x1)))))) | (31) |
0(1(3(2(x1)))) | → | 0(2(1(4(3(x1))))) | (12) |
5(2(0(3(2(x1))))) | → | 0(2(5(2(3(1(x1)))))) | (45) |
5(0(1(2(x1)))) | → | 0(2(1(3(4(5(x1)))))) | (23) |
5(0(2(2(x1)))) | → | 2(0(2(4(1(5(x1)))))) | (24) |
0(1(2(2(x1)))) | → | 0(2(3(2(1(x1))))) | (11) |
0(1(1(2(x1)))) | → | 0(2(1(1(3(x1))))) | (9) |
0(1(3(2(x1)))) | → | 3(3(0(2(1(x1))))) | (13) |
5(0(4(2(2(x1))))) | → | 2(0(2(4(1(5(x1)))))) | (40) |
0(3(2(x1))) | → | 0(2(1(3(x1)))) | (6) |
5(0(1(3(2(x1))))) | → | 3(5(0(2(1(3(x1)))))) | (38) |
4(5(1(4(2(x1))))) | → | 2(4(4(4(1(5(x1)))))) | (37) |
5(1(0(3(2(x1))))) | → | 0(4(3(5(1(2(x1)))))) | (41) |
5(1(0(3(2(x1))))) | → | 5(3(1(1(0(2(x1)))))) | (42) |
3(0(3(1(2(x1))))) | → | 1(3(3(0(2(3(x1)))))) | (35) |
0(1(2(5(2(x1))))) | → | 2(0(2(1(5(4(x1)))))) | (29) |
5(1(0(5(2(x1))))) | → | 3(5(5(0(2(1(x1)))))) | (43) |
0(1(2(x1))) | → | 0(2(1(3(x1)))) | (2) |
0#(3(2(2(x1)))) | → | 0#(0(4(2(3(2(x1)))))) | (150) |
The dependency pairs are split into 1 component.
0#(3(2(2(x1)))) | → | 0#(0(2(3(2(x1))))) | (139) |
0#(5(0(3(2(x1))))) | → | 0#(5(0(0(2(3(x1)))))) | (193) |
[0#(x1)] | = |
|
||||||||||||
[1(x1)] | = |
|
||||||||||||
[4(x1)] | = |
|
||||||||||||
[5(x1)] | = |
|
||||||||||||
[3(x1)] | = |
|
||||||||||||
[2#(x1)] | = |
|
||||||||||||
[4#(x1)] | = |
|
||||||||||||
[0(x1)] | = |
|
||||||||||||
[3#(x1)] | = |
|
||||||||||||
[5#(x1)] | = |
|
||||||||||||
[2(x1)] | = |
|
2(0(3(2(x1)))) | → | 1(3(0(2(2(x1))))) | (18) |
0(1(2(x1))) | → | 0(2(4(1(1(x1))))) | (4) |
0(1(5(2(x1)))) | → | 5(0(2(1(1(x1))))) | (15) |
0(3(2(x1))) | → | 0(0(2(1(1(3(x1)))))) | (8) |
0(1(2(x1))) | → | 0(2(1(1(x1)))) | (1) |
0(1(2(x1))) | → | 0(2(1(1(3(x1))))) | (3) |
0(3(2(2(x1)))) | → | 0(0(2(3(2(x1))))) | (16) |
3(3(5(2(x1)))) | → | 3(0(2(1(5(3(x1)))))) | (21) |
3(0(3(4(2(x1))))) | → | 1(3(4(0(2(3(x1)))))) | (36) |
5(1(2(2(x1)))) | → | 0(2(1(5(2(1(x1)))))) | (26) |
3(0(3(2(x1)))) | → | 3(0(0(0(2(3(x1)))))) | (19) |
0(5(0(1(2(x1))))) | → | 0(4(5(0(2(1(x1)))))) | (32) |
0(3(2(2(x1)))) | → | 0(0(4(2(3(2(x1)))))) | (17) |
5(1(2(2(x1)))) | → | 2(1(5(2(1(1(x1)))))) | (27) |
0(5(5(2(2(x1))))) | → | 0(2(1(5(5(2(x1)))))) | (34) |
4(5(2(2(x1)))) | → | 2(5(0(2(4(1(x1)))))) | (22) |
0(1(2(4(2(x1))))) | → | 4(2(1(0(2(1(x1)))))) | (28) |
5(1(0(5(2(x1))))) | → | 5(0(2(1(5(5(x1)))))) | (44) |
0(1(2(x1))) | → | 0(2(4(1(3(x1))))) | (5) |
0(5(0(3(2(x1))))) | → | 0(5(0(0(2(3(x1)))))) | (33) |
0(1(2(2(x1)))) | → | 0(2(2(1(1(x1))))) | (10) |
5(0(3(1(2(x1))))) | → | 0(2(1(4(3(5(x1)))))) | (39) |
0(3(2(x1))) | → | 0(2(1(1(3(x1))))) | (7) |
3(1(5(2(x1)))) | → | 0(2(1(5(3(x1))))) | (20) |
5(0(3(2(x1)))) | → | 3(0(2(1(4(5(x1)))))) | (25) |
0(1(5(1(2(x1))))) | → | 1(0(2(1(1(5(x1)))))) | (30) |
0(1(3(2(x1)))) | → | 3(0(2(4(1(1(x1)))))) | (14) |
0(1(5(5(2(x1))))) | → | 0(2(1(5(5(1(x1)))))) | (31) |
0(1(3(2(x1)))) | → | 0(2(1(4(3(x1))))) | (12) |
5(2(0(3(2(x1))))) | → | 0(2(5(2(3(1(x1)))))) | (45) |
5(0(1(2(x1)))) | → | 0(2(1(3(4(5(x1)))))) | (23) |
5(0(2(2(x1)))) | → | 2(0(2(4(1(5(x1)))))) | (24) |
0(1(2(2(x1)))) | → | 0(2(3(2(1(x1))))) | (11) |
0(1(1(2(x1)))) | → | 0(2(1(1(3(x1))))) | (9) |
0(1(3(2(x1)))) | → | 3(3(0(2(1(x1))))) | (13) |
5(0(4(2(2(x1))))) | → | 2(0(2(4(1(5(x1)))))) | (40) |
0(3(2(x1))) | → | 0(2(1(3(x1)))) | (6) |
5(0(1(3(2(x1))))) | → | 3(5(0(2(1(3(x1)))))) | (38) |
4(5(1(4(2(x1))))) | → | 2(4(4(4(1(5(x1)))))) | (37) |
5(1(0(3(2(x1))))) | → | 0(4(3(5(1(2(x1)))))) | (41) |
5(1(0(3(2(x1))))) | → | 5(3(1(1(0(2(x1)))))) | (42) |
3(0(3(1(2(x1))))) | → | 1(3(3(0(2(3(x1)))))) | (35) |
0(1(2(5(2(x1))))) | → | 2(0(2(1(5(4(x1)))))) | (29) |
5(1(0(5(2(x1))))) | → | 3(5(5(0(2(1(x1)))))) | (43) |
0(1(2(x1))) | → | 0(2(1(3(x1)))) | (2) |
0#(3(2(2(x1)))) | → | 0#(0(2(3(2(x1))))) | (139) |
The dependency pairs are split into 1 component.
0#(5(0(3(2(x1))))) | → | 0#(5(0(0(2(3(x1)))))) | (193) |
[0#(x1)] | = |
|
||||||||||||
[1(x1)] | = |
|
||||||||||||
[4(x1)] | = |
|
||||||||||||
[5(x1)] | = |
|
||||||||||||
[3(x1)] | = |
|
||||||||||||
[2#(x1)] | = |
|
||||||||||||
[4#(x1)] | = |
|
||||||||||||
[0(x1)] | = |
|
||||||||||||
[3#(x1)] | = |
|
||||||||||||
[5#(x1)] | = |
|
||||||||||||
[2(x1)] | = |
|
2(0(3(2(x1)))) | → | 1(3(0(2(2(x1))))) | (18) |
0(1(2(x1))) | → | 0(2(4(1(1(x1))))) | (4) |
0(1(5(2(x1)))) | → | 5(0(2(1(1(x1))))) | (15) |
0(3(2(x1))) | → | 0(0(2(1(1(3(x1)))))) | (8) |
0(1(2(x1))) | → | 0(2(1(1(x1)))) | (1) |
0(1(2(x1))) | → | 0(2(1(1(3(x1))))) | (3) |
0(3(2(2(x1)))) | → | 0(0(2(3(2(x1))))) | (16) |
3(3(5(2(x1)))) | → | 3(0(2(1(5(3(x1)))))) | (21) |
3(0(3(4(2(x1))))) | → | 1(3(4(0(2(3(x1)))))) | (36) |
5(1(2(2(x1)))) | → | 0(2(1(5(2(1(x1)))))) | (26) |
3(0(3(2(x1)))) | → | 3(0(0(0(2(3(x1)))))) | (19) |
0(5(0(1(2(x1))))) | → | 0(4(5(0(2(1(x1)))))) | (32) |
0(3(2(2(x1)))) | → | 0(0(4(2(3(2(x1)))))) | (17) |
5(1(2(2(x1)))) | → | 2(1(5(2(1(1(x1)))))) | (27) |
0(5(5(2(2(x1))))) | → | 0(2(1(5(5(2(x1)))))) | (34) |
4(5(2(2(x1)))) | → | 2(5(0(2(4(1(x1)))))) | (22) |
0(1(2(4(2(x1))))) | → | 4(2(1(0(2(1(x1)))))) | (28) |
5(1(0(5(2(x1))))) | → | 5(0(2(1(5(5(x1)))))) | (44) |
0(1(2(x1))) | → | 0(2(4(1(3(x1))))) | (5) |
0(5(0(3(2(x1))))) | → | 0(5(0(0(2(3(x1)))))) | (33) |
0(1(2(2(x1)))) | → | 0(2(2(1(1(x1))))) | (10) |
5(0(3(1(2(x1))))) | → | 0(2(1(4(3(5(x1)))))) | (39) |
0(3(2(x1))) | → | 0(2(1(1(3(x1))))) | (7) |
3(1(5(2(x1)))) | → | 0(2(1(5(3(x1))))) | (20) |
5(0(3(2(x1)))) | → | 3(0(2(1(4(5(x1)))))) | (25) |
0(1(5(1(2(x1))))) | → | 1(0(2(1(1(5(x1)))))) | (30) |
0(1(3(2(x1)))) | → | 3(0(2(4(1(1(x1)))))) | (14) |
0(1(5(5(2(x1))))) | → | 0(2(1(5(5(1(x1)))))) | (31) |
0(1(3(2(x1)))) | → | 0(2(1(4(3(x1))))) | (12) |
5(2(0(3(2(x1))))) | → | 0(2(5(2(3(1(x1)))))) | (45) |
5(0(1(2(x1)))) | → | 0(2(1(3(4(5(x1)))))) | (23) |
5(0(2(2(x1)))) | → | 2(0(2(4(1(5(x1)))))) | (24) |
0(1(2(2(x1)))) | → | 0(2(3(2(1(x1))))) | (11) |
0(1(1(2(x1)))) | → | 0(2(1(1(3(x1))))) | (9) |
0(1(3(2(x1)))) | → | 3(3(0(2(1(x1))))) | (13) |
5(0(4(2(2(x1))))) | → | 2(0(2(4(1(5(x1)))))) | (40) |
0(3(2(x1))) | → | 0(2(1(3(x1)))) | (6) |
5(0(1(3(2(x1))))) | → | 3(5(0(2(1(3(x1)))))) | (38) |
4(5(1(4(2(x1))))) | → | 2(4(4(4(1(5(x1)))))) | (37) |
5(1(0(3(2(x1))))) | → | 0(4(3(5(1(2(x1)))))) | (41) |
5(1(0(3(2(x1))))) | → | 5(3(1(1(0(2(x1)))))) | (42) |
3(0(3(1(2(x1))))) | → | 1(3(3(0(2(3(x1)))))) | (35) |
0(1(2(5(2(x1))))) | → | 2(0(2(1(5(4(x1)))))) | (29) |
5(1(0(5(2(x1))))) | → | 3(5(5(0(2(1(x1)))))) | (43) |
0(1(2(x1))) | → | 0(2(1(3(x1)))) | (2) |
0#(5(0(3(2(x1))))) | → | 0#(5(0(0(2(3(x1)))))) | (193) |
The dependency pairs are split into 0 components.
5#(1(0(3(2(x1))))) | → | 5#(1(2(x1))) | (137) |
π(1) | = | 1 |
π(4) | = | 1 |
π(2#) | = | 1 |
π(4#) | = | 1 |
prec(0#) | = | 0 | status(0#) | = | [] | list-extension(0#) | = | Lex | ||
prec(5) | = | 2 | status(5) | = | [] | list-extension(5) | = | Lex | ||
prec(3) | = | 1 | status(3) | = | [] | list-extension(3) | = | Lex | ||
prec(0) | = | 2 | status(0) | = | [] | list-extension(0) | = | Lex | ||
prec(3#) | = | 0 | status(3#) | = | [] | list-extension(3#) | = | Lex | ||
prec(5#) | = | 0 | status(5#) | = | [1] | list-extension(5#) | = | Lex | ||
prec(2) | = | 1 | status(2) | = | [] | list-extension(2) | = | Lex |
[0#(x1)] | = | 0 |
[5(x1)] | = | 30707 |
[3(x1)] | = | x1 + 0 |
[0(x1)] | = | x1 + 0 |
[3#(x1)] | = | 1 |
[5#(x1)] | = | x1 + 1 |
[2(x1)] | = | 30706 |
2(0(3(2(x1)))) | → | 1(3(0(2(2(x1))))) | (18) |
0(1(2(x1))) | → | 0(2(4(1(1(x1))))) | (4) |
0(1(5(2(x1)))) | → | 5(0(2(1(1(x1))))) | (15) |
0(3(2(x1))) | → | 0(0(2(1(1(3(x1)))))) | (8) |
0(1(2(x1))) | → | 0(2(1(1(x1)))) | (1) |
0(1(2(x1))) | → | 0(2(1(1(3(x1))))) | (3) |
0(3(2(2(x1)))) | → | 0(0(2(3(2(x1))))) | (16) |
3(3(5(2(x1)))) | → | 3(0(2(1(5(3(x1)))))) | (21) |
3(0(3(4(2(x1))))) | → | 1(3(4(0(2(3(x1)))))) | (36) |
5(1(2(2(x1)))) | → | 0(2(1(5(2(1(x1)))))) | (26) |
3(0(3(2(x1)))) | → | 3(0(0(0(2(3(x1)))))) | (19) |
0(5(0(1(2(x1))))) | → | 0(4(5(0(2(1(x1)))))) | (32) |
0(3(2(2(x1)))) | → | 0(0(4(2(3(2(x1)))))) | (17) |
5(1(2(2(x1)))) | → | 2(1(5(2(1(1(x1)))))) | (27) |
0(5(5(2(2(x1))))) | → | 0(2(1(5(5(2(x1)))))) | (34) |
4(5(2(2(x1)))) | → | 2(5(0(2(4(1(x1)))))) | (22) |
0(1(2(4(2(x1))))) | → | 4(2(1(0(2(1(x1)))))) | (28) |
5(1(0(5(2(x1))))) | → | 5(0(2(1(5(5(x1)))))) | (44) |
0(1(2(x1))) | → | 0(2(4(1(3(x1))))) | (5) |
0(5(0(3(2(x1))))) | → | 0(5(0(0(2(3(x1)))))) | (33) |
0(1(2(2(x1)))) | → | 0(2(2(1(1(x1))))) | (10) |
5(0(3(1(2(x1))))) | → | 0(2(1(4(3(5(x1)))))) | (39) |
0(3(2(x1))) | → | 0(2(1(1(3(x1))))) | (7) |
3(1(5(2(x1)))) | → | 0(2(1(5(3(x1))))) | (20) |
5(0(3(2(x1)))) | → | 3(0(2(1(4(5(x1)))))) | (25) |
0(1(5(1(2(x1))))) | → | 1(0(2(1(1(5(x1)))))) | (30) |
0(1(3(2(x1)))) | → | 3(0(2(4(1(1(x1)))))) | (14) |
0(1(5(5(2(x1))))) | → | 0(2(1(5(5(1(x1)))))) | (31) |
0(1(3(2(x1)))) | → | 0(2(1(4(3(x1))))) | (12) |
5(2(0(3(2(x1))))) | → | 0(2(5(2(3(1(x1)))))) | (45) |
5(0(1(2(x1)))) | → | 0(2(1(3(4(5(x1)))))) | (23) |
5(0(2(2(x1)))) | → | 2(0(2(4(1(5(x1)))))) | (24) |
0(1(2(2(x1)))) | → | 0(2(3(2(1(x1))))) | (11) |
0(1(1(2(x1)))) | → | 0(2(1(1(3(x1))))) | (9) |
0(1(3(2(x1)))) | → | 3(3(0(2(1(x1))))) | (13) |
5(0(4(2(2(x1))))) | → | 2(0(2(4(1(5(x1)))))) | (40) |
0(3(2(x1))) | → | 0(2(1(3(x1)))) | (6) |
5(0(1(3(2(x1))))) | → | 3(5(0(2(1(3(x1)))))) | (38) |
4(5(1(4(2(x1))))) | → | 2(4(4(4(1(5(x1)))))) | (37) |
5(1(0(3(2(x1))))) | → | 0(4(3(5(1(2(x1)))))) | (41) |
5(1(0(3(2(x1))))) | → | 5(3(1(1(0(2(x1)))))) | (42) |
3(0(3(1(2(x1))))) | → | 1(3(3(0(2(3(x1)))))) | (35) |
0(1(2(5(2(x1))))) | → | 2(0(2(1(5(4(x1)))))) | (29) |
5(1(0(5(2(x1))))) | → | 3(5(5(0(2(1(x1)))))) | (43) |
0(1(2(x1))) | → | 0(2(1(3(x1)))) | (2) |
5#(1(0(3(2(x1))))) | → | 5#(1(2(x1))) | (137) |
The dependency pairs are split into 0 components.
3#(0(3(4(2(x1))))) | → | 3#(4(0(2(3(x1))))) | (104) |
3#(0(3(2(x1)))) | → | 3#(0(0(0(2(3(x1)))))) | (97) |
3#(0(3(1(2(x1))))) | → | 3#(0(2(3(x1)))) | (215) |
3#(0(3(1(2(x1))))) | → | 3#(3(0(2(3(x1))))) | (130) |
[0#(x1)] | = | 53064 |
[1(x1)] | = | 1 |
[4(x1)] | = | 28084 |
[5(x1)] | = | 28085 |
[3(x1)] | = | 28085 |
[2#(x1)] | = | 0 |
[4#(x1)] | = | 0 |
[0(x1)] | = | 28085 |
[3#(x1)] | = | x1 + 53066 |
[5#(x1)] | = | 53065 |
[2(x1)] | = | 28084 |
2(0(3(2(x1)))) | → | 1(3(0(2(2(x1))))) | (18) |
0(1(2(x1))) | → | 0(2(4(1(1(x1))))) | (4) |
0(1(5(2(x1)))) | → | 5(0(2(1(1(x1))))) | (15) |
0(3(2(x1))) | → | 0(0(2(1(1(3(x1)))))) | (8) |
0(1(2(x1))) | → | 0(2(1(1(x1)))) | (1) |
0(1(2(x1))) | → | 0(2(1(1(3(x1))))) | (3) |
0(3(2(2(x1)))) | → | 0(0(2(3(2(x1))))) | (16) |
3(3(5(2(x1)))) | → | 3(0(2(1(5(3(x1)))))) | (21) |
3(0(3(4(2(x1))))) | → | 1(3(4(0(2(3(x1)))))) | (36) |
5(1(2(2(x1)))) | → | 0(2(1(5(2(1(x1)))))) | (26) |
3(0(3(2(x1)))) | → | 3(0(0(0(2(3(x1)))))) | (19) |
0(5(0(1(2(x1))))) | → | 0(4(5(0(2(1(x1)))))) | (32) |
0(3(2(2(x1)))) | → | 0(0(4(2(3(2(x1)))))) | (17) |
5(1(2(2(x1)))) | → | 2(1(5(2(1(1(x1)))))) | (27) |
0(5(5(2(2(x1))))) | → | 0(2(1(5(5(2(x1)))))) | (34) |
4(5(2(2(x1)))) | → | 2(5(0(2(4(1(x1)))))) | (22) |
0(1(2(4(2(x1))))) | → | 4(2(1(0(2(1(x1)))))) | (28) |
5(1(0(5(2(x1))))) | → | 5(0(2(1(5(5(x1)))))) | (44) |
0(1(2(x1))) | → | 0(2(4(1(3(x1))))) | (5) |
0(5(0(3(2(x1))))) | → | 0(5(0(0(2(3(x1)))))) | (33) |
0(1(2(2(x1)))) | → | 0(2(2(1(1(x1))))) | (10) |
5(0(3(1(2(x1))))) | → | 0(2(1(4(3(5(x1)))))) | (39) |
0(3(2(x1))) | → | 0(2(1(1(3(x1))))) | (7) |
3(1(5(2(x1)))) | → | 0(2(1(5(3(x1))))) | (20) |
5(0(3(2(x1)))) | → | 3(0(2(1(4(5(x1)))))) | (25) |
0(1(5(1(2(x1))))) | → | 1(0(2(1(1(5(x1)))))) | (30) |
0(1(3(2(x1)))) | → | 3(0(2(4(1(1(x1)))))) | (14) |
0(1(5(5(2(x1))))) | → | 0(2(1(5(5(1(x1)))))) | (31) |
0(1(3(2(x1)))) | → | 0(2(1(4(3(x1))))) | (12) |
5(2(0(3(2(x1))))) | → | 0(2(5(2(3(1(x1)))))) | (45) |
5(0(1(2(x1)))) | → | 0(2(1(3(4(5(x1)))))) | (23) |
5(0(2(2(x1)))) | → | 2(0(2(4(1(5(x1)))))) | (24) |
0(1(2(2(x1)))) | → | 0(2(3(2(1(x1))))) | (11) |
0(1(1(2(x1)))) | → | 0(2(1(1(3(x1))))) | (9) |
0(1(3(2(x1)))) | → | 3(3(0(2(1(x1))))) | (13) |
5(0(4(2(2(x1))))) | → | 2(0(2(4(1(5(x1)))))) | (40) |
0(3(2(x1))) | → | 0(2(1(3(x1)))) | (6) |
5(0(1(3(2(x1))))) | → | 3(5(0(2(1(3(x1)))))) | (38) |
4(5(1(4(2(x1))))) | → | 2(4(4(4(1(5(x1)))))) | (37) |
5(1(0(3(2(x1))))) | → | 0(4(3(5(1(2(x1)))))) | (41) |
5(1(0(3(2(x1))))) | → | 5(3(1(1(0(2(x1)))))) | (42) |
3(0(3(1(2(x1))))) | → | 1(3(3(0(2(3(x1)))))) | (35) |
0(1(2(5(2(x1))))) | → | 2(0(2(1(5(4(x1)))))) | (29) |
5(1(0(5(2(x1))))) | → | 3(5(5(0(2(1(x1)))))) | (43) |
0(1(2(x1))) | → | 0(2(1(3(x1)))) | (2) |
3#(0(3(4(2(x1))))) | → | 3#(4(0(2(3(x1))))) | (104) |
The dependency pairs are split into 1 component.
3#(0(3(2(x1)))) | → | 3#(0(0(0(2(3(x1)))))) | (97) |
3#(0(3(1(2(x1))))) | → | 3#(0(2(3(x1)))) | (215) |
3#(0(3(1(2(x1))))) | → | 3#(3(0(2(3(x1))))) | (130) |
π(1) | = | 1 |
π(4) | = | 1 |
π(2#) | = | 1 |
π(4#) | = | 1 |
prec(0#) | = | 0 | status(0#) | = | [] | list-extension(0#) | = | Lex | ||
prec(5) | = | 2 | status(5) | = | [] | list-extension(5) | = | Lex | ||
prec(3) | = | 1 | status(3) | = | [] | list-extension(3) | = | Lex | ||
prec(0) | = | 2 | status(0) | = | [] | list-extension(0) | = | Lex | ||
prec(3#) | = | 0 | status(3#) | = | [1] | list-extension(3#) | = | Lex | ||
prec(5#) | = | 0 | status(5#) | = | [1] | list-extension(5#) | = | Lex | ||
prec(2) | = | 1 | status(2) | = | [] | list-extension(2) | = | Lex |
[0#(x1)] | = | 0 |
[5(x1)] | = | 22335 |
[3(x1)] | = | x1 + 0 |
[0(x1)] | = | x1 + 0 |
[3#(x1)] | = | x1 + 1 |
[5#(x1)] | = | x1 + 1 |
[2(x1)] | = | 1 |
2(0(3(2(x1)))) | → | 1(3(0(2(2(x1))))) | (18) |
0(1(2(x1))) | → | 0(2(4(1(1(x1))))) | (4) |
0(1(5(2(x1)))) | → | 5(0(2(1(1(x1))))) | (15) |
0(3(2(x1))) | → | 0(0(2(1(1(3(x1)))))) | (8) |
0(1(2(x1))) | → | 0(2(1(1(x1)))) | (1) |
0(1(2(x1))) | → | 0(2(1(1(3(x1))))) | (3) |
0(3(2(2(x1)))) | → | 0(0(2(3(2(x1))))) | (16) |
3(3(5(2(x1)))) | → | 3(0(2(1(5(3(x1)))))) | (21) |
3(0(3(4(2(x1))))) | → | 1(3(4(0(2(3(x1)))))) | (36) |
5(1(2(2(x1)))) | → | 0(2(1(5(2(1(x1)))))) | (26) |
3(0(3(2(x1)))) | → | 3(0(0(0(2(3(x1)))))) | (19) |
0(5(0(1(2(x1))))) | → | 0(4(5(0(2(1(x1)))))) | (32) |
0(3(2(2(x1)))) | → | 0(0(4(2(3(2(x1)))))) | (17) |
5(1(2(2(x1)))) | → | 2(1(5(2(1(1(x1)))))) | (27) |
0(5(5(2(2(x1))))) | → | 0(2(1(5(5(2(x1)))))) | (34) |
4(5(2(2(x1)))) | → | 2(5(0(2(4(1(x1)))))) | (22) |
0(1(2(4(2(x1))))) | → | 4(2(1(0(2(1(x1)))))) | (28) |
5(1(0(5(2(x1))))) | → | 5(0(2(1(5(5(x1)))))) | (44) |
0(1(2(x1))) | → | 0(2(4(1(3(x1))))) | (5) |
0(5(0(3(2(x1))))) | → | 0(5(0(0(2(3(x1)))))) | (33) |
0(1(2(2(x1)))) | → | 0(2(2(1(1(x1))))) | (10) |
5(0(3(1(2(x1))))) | → | 0(2(1(4(3(5(x1)))))) | (39) |
0(3(2(x1))) | → | 0(2(1(1(3(x1))))) | (7) |
3(1(5(2(x1)))) | → | 0(2(1(5(3(x1))))) | (20) |
5(0(3(2(x1)))) | → | 3(0(2(1(4(5(x1)))))) | (25) |
0(1(5(1(2(x1))))) | → | 1(0(2(1(1(5(x1)))))) | (30) |
0(1(3(2(x1)))) | → | 3(0(2(4(1(1(x1)))))) | (14) |
0(1(5(5(2(x1))))) | → | 0(2(1(5(5(1(x1)))))) | (31) |
0(1(3(2(x1)))) | → | 0(2(1(4(3(x1))))) | (12) |
5(2(0(3(2(x1))))) | → | 0(2(5(2(3(1(x1)))))) | (45) |
5(0(1(2(x1)))) | → | 0(2(1(3(4(5(x1)))))) | (23) |
5(0(2(2(x1)))) | → | 2(0(2(4(1(5(x1)))))) | (24) |
0(1(2(2(x1)))) | → | 0(2(3(2(1(x1))))) | (11) |
0(1(1(2(x1)))) | → | 0(2(1(1(3(x1))))) | (9) |
0(1(3(2(x1)))) | → | 3(3(0(2(1(x1))))) | (13) |
5(0(4(2(2(x1))))) | → | 2(0(2(4(1(5(x1)))))) | (40) |
0(3(2(x1))) | → | 0(2(1(3(x1)))) | (6) |
5(0(1(3(2(x1))))) | → | 3(5(0(2(1(3(x1)))))) | (38) |
4(5(1(4(2(x1))))) | → | 2(4(4(4(1(5(x1)))))) | (37) |
5(1(0(3(2(x1))))) | → | 0(4(3(5(1(2(x1)))))) | (41) |
5(1(0(3(2(x1))))) | → | 5(3(1(1(0(2(x1)))))) | (42) |
3(0(3(1(2(x1))))) | → | 1(3(3(0(2(3(x1)))))) | (35) |
0(1(2(5(2(x1))))) | → | 2(0(2(1(5(4(x1)))))) | (29) |
5(1(0(5(2(x1))))) | → | 3(5(5(0(2(1(x1)))))) | (43) |
0(1(2(x1))) | → | 0(2(1(3(x1)))) | (2) |
3#(0(3(1(2(x1))))) | → | 3#(3(0(2(3(x1))))) | (130) |
The dependency pairs are split into 1 component.
3#(0(3(2(x1)))) | → | 3#(0(0(0(2(3(x1)))))) | (97) |
3#(0(3(1(2(x1))))) | → | 3#(0(2(3(x1)))) | (215) |
[0#(x1)] | = |
|
||||||||||||
[1(x1)] | = |
|
||||||||||||
[4(x1)] | = |
|
||||||||||||
[5(x1)] | = |
|
||||||||||||
[3(x1)] | = |
|
||||||||||||
[2#(x1)] | = |
|
||||||||||||
[4#(x1)] | = |
|
||||||||||||
[0(x1)] | = |
|
||||||||||||
[3#(x1)] | = |
|
||||||||||||
[5#(x1)] | = |
|
||||||||||||
[2(x1)] | = |
|
2(0(3(2(x1)))) | → | 1(3(0(2(2(x1))))) | (18) |
0(1(2(x1))) | → | 0(2(4(1(1(x1))))) | (4) |
0(1(5(2(x1)))) | → | 5(0(2(1(1(x1))))) | (15) |
0(3(2(x1))) | → | 0(0(2(1(1(3(x1)))))) | (8) |
0(1(2(x1))) | → | 0(2(1(1(x1)))) | (1) |
0(1(2(x1))) | → | 0(2(1(1(3(x1))))) | (3) |
0(3(2(2(x1)))) | → | 0(0(2(3(2(x1))))) | (16) |
3(3(5(2(x1)))) | → | 3(0(2(1(5(3(x1)))))) | (21) |
3(0(3(4(2(x1))))) | → | 1(3(4(0(2(3(x1)))))) | (36) |
5(1(2(2(x1)))) | → | 0(2(1(5(2(1(x1)))))) | (26) |
3(0(3(2(x1)))) | → | 3(0(0(0(2(3(x1)))))) | (19) |
0(5(0(1(2(x1))))) | → | 0(4(5(0(2(1(x1)))))) | (32) |
0(3(2(2(x1)))) | → | 0(0(4(2(3(2(x1)))))) | (17) |
5(1(2(2(x1)))) | → | 2(1(5(2(1(1(x1)))))) | (27) |
0(5(5(2(2(x1))))) | → | 0(2(1(5(5(2(x1)))))) | (34) |
4(5(2(2(x1)))) | → | 2(5(0(2(4(1(x1)))))) | (22) |
0(1(2(4(2(x1))))) | → | 4(2(1(0(2(1(x1)))))) | (28) |
5(1(0(5(2(x1))))) | → | 5(0(2(1(5(5(x1)))))) | (44) |
0(1(2(x1))) | → | 0(2(4(1(3(x1))))) | (5) |
0(5(0(3(2(x1))))) | → | 0(5(0(0(2(3(x1)))))) | (33) |
0(1(2(2(x1)))) | → | 0(2(2(1(1(x1))))) | (10) |
5(0(3(1(2(x1))))) | → | 0(2(1(4(3(5(x1)))))) | (39) |
0(3(2(x1))) | → | 0(2(1(1(3(x1))))) | (7) |
3(1(5(2(x1)))) | → | 0(2(1(5(3(x1))))) | (20) |
5(0(3(2(x1)))) | → | 3(0(2(1(4(5(x1)))))) | (25) |
0(1(5(1(2(x1))))) | → | 1(0(2(1(1(5(x1)))))) | (30) |
0(1(3(2(x1)))) | → | 3(0(2(4(1(1(x1)))))) | (14) |
0(1(5(5(2(x1))))) | → | 0(2(1(5(5(1(x1)))))) | (31) |
0(1(3(2(x1)))) | → | 0(2(1(4(3(x1))))) | (12) |
5(2(0(3(2(x1))))) | → | 0(2(5(2(3(1(x1)))))) | (45) |
5(0(1(2(x1)))) | → | 0(2(1(3(4(5(x1)))))) | (23) |
5(0(2(2(x1)))) | → | 2(0(2(4(1(5(x1)))))) | (24) |
0(1(2(2(x1)))) | → | 0(2(3(2(1(x1))))) | (11) |
0(1(1(2(x1)))) | → | 0(2(1(1(3(x1))))) | (9) |
0(1(3(2(x1)))) | → | 3(3(0(2(1(x1))))) | (13) |
5(0(4(2(2(x1))))) | → | 2(0(2(4(1(5(x1)))))) | (40) |
0(3(2(x1))) | → | 0(2(1(3(x1)))) | (6) |
5(0(1(3(2(x1))))) | → | 3(5(0(2(1(3(x1)))))) | (38) |
4(5(1(4(2(x1))))) | → | 2(4(4(4(1(5(x1)))))) | (37) |
5(1(0(3(2(x1))))) | → | 0(4(3(5(1(2(x1)))))) | (41) |
5(1(0(3(2(x1))))) | → | 5(3(1(1(0(2(x1)))))) | (42) |
3(0(3(1(2(x1))))) | → | 1(3(3(0(2(3(x1)))))) | (35) |
0(1(2(5(2(x1))))) | → | 2(0(2(1(5(4(x1)))))) | (29) |
5(1(0(5(2(x1))))) | → | 3(5(5(0(2(1(x1)))))) | (43) |
0(1(2(x1))) | → | 0(2(1(3(x1)))) | (2) |
3#(0(3(2(x1)))) | → | 3#(0(0(0(2(3(x1)))))) | (97) |
The dependency pairs are split into 1 component.
3#(0(3(1(2(x1))))) | → | 3#(0(2(3(x1)))) | (215) |
[0#(x1)] | = | 53064 |
[1(x1)] | = | 9728 |
[4(x1)] | = | 9728 |
[5(x1)] | = | 9729 |
[3(x1)] | = | 9729 |
[2#(x1)] | = | 0 |
[4#(x1)] | = | 0 |
[0(x1)] | = | x1 + 1 |
[3#(x1)] | = | x1 + 53066 |
[5#(x1)] | = | 53065 |
[2(x1)] | = | 9728 |
2(0(3(2(x1)))) | → | 1(3(0(2(2(x1))))) | (18) |
0(1(2(x1))) | → | 0(2(4(1(1(x1))))) | (4) |
0(1(5(2(x1)))) | → | 5(0(2(1(1(x1))))) | (15) |
0(3(2(x1))) | → | 0(0(2(1(1(3(x1)))))) | (8) |
0(1(2(x1))) | → | 0(2(1(1(x1)))) | (1) |
0(1(2(x1))) | → | 0(2(1(1(3(x1))))) | (3) |
0(3(2(2(x1)))) | → | 0(0(2(3(2(x1))))) | (16) |
3(3(5(2(x1)))) | → | 3(0(2(1(5(3(x1)))))) | (21) |
3(0(3(4(2(x1))))) | → | 1(3(4(0(2(3(x1)))))) | (36) |
5(1(2(2(x1)))) | → | 0(2(1(5(2(1(x1)))))) | (26) |
3(0(3(2(x1)))) | → | 3(0(0(0(2(3(x1)))))) | (19) |
0(5(0(1(2(x1))))) | → | 0(4(5(0(2(1(x1)))))) | (32) |
0(3(2(2(x1)))) | → | 0(0(4(2(3(2(x1)))))) | (17) |
5(1(2(2(x1)))) | → | 2(1(5(2(1(1(x1)))))) | (27) |
0(5(5(2(2(x1))))) | → | 0(2(1(5(5(2(x1)))))) | (34) |
4(5(2(2(x1)))) | → | 2(5(0(2(4(1(x1)))))) | (22) |
0(1(2(4(2(x1))))) | → | 4(2(1(0(2(1(x1)))))) | (28) |
5(1(0(5(2(x1))))) | → | 5(0(2(1(5(5(x1)))))) | (44) |
0(1(2(x1))) | → | 0(2(4(1(3(x1))))) | (5) |
0(5(0(3(2(x1))))) | → | 0(5(0(0(2(3(x1)))))) | (33) |
0(1(2(2(x1)))) | → | 0(2(2(1(1(x1))))) | (10) |
5(0(3(1(2(x1))))) | → | 0(2(1(4(3(5(x1)))))) | (39) |
0(3(2(x1))) | → | 0(2(1(1(3(x1))))) | (7) |
3(1(5(2(x1)))) | → | 0(2(1(5(3(x1))))) | (20) |
5(0(3(2(x1)))) | → | 3(0(2(1(4(5(x1)))))) | (25) |
0(1(5(1(2(x1))))) | → | 1(0(2(1(1(5(x1)))))) | (30) |
0(1(3(2(x1)))) | → | 3(0(2(4(1(1(x1)))))) | (14) |
0(1(5(5(2(x1))))) | → | 0(2(1(5(5(1(x1)))))) | (31) |
0(1(3(2(x1)))) | → | 0(2(1(4(3(x1))))) | (12) |
5(2(0(3(2(x1))))) | → | 0(2(5(2(3(1(x1)))))) | (45) |
5(0(1(2(x1)))) | → | 0(2(1(3(4(5(x1)))))) | (23) |
5(0(2(2(x1)))) | → | 2(0(2(4(1(5(x1)))))) | (24) |
0(1(2(2(x1)))) | → | 0(2(3(2(1(x1))))) | (11) |
0(1(1(2(x1)))) | → | 0(2(1(1(3(x1))))) | (9) |
0(1(3(2(x1)))) | → | 3(3(0(2(1(x1))))) | (13) |
5(0(4(2(2(x1))))) | → | 2(0(2(4(1(5(x1)))))) | (40) |
0(3(2(x1))) | → | 0(2(1(3(x1)))) | (6) |
5(0(1(3(2(x1))))) | → | 3(5(0(2(1(3(x1)))))) | (38) |
4(5(1(4(2(x1))))) | → | 2(4(4(4(1(5(x1)))))) | (37) |
5(1(0(3(2(x1))))) | → | 0(4(3(5(1(2(x1)))))) | (41) |
5(1(0(3(2(x1))))) | → | 5(3(1(1(0(2(x1)))))) | (42) |
3(0(3(1(2(x1))))) | → | 1(3(3(0(2(3(x1)))))) | (35) |
0(1(2(5(2(x1))))) | → | 2(0(2(1(5(4(x1)))))) | (29) |
5(1(0(5(2(x1))))) | → | 3(5(5(0(2(1(x1)))))) | (43) |
0(1(2(x1))) | → | 0(2(1(3(x1)))) | (2) |
3#(0(3(1(2(x1))))) | → | 3#(0(2(3(x1)))) | (215) |
The dependency pairs are split into 0 components.