The rewrite relation of the following TRS is considered.
| 0(1(1(x1))) | → | 1(2(1(2(0(x1))))) | (1) |
| 0(3(1(x1))) | → | 1(3(2(2(0(x1))))) | (2) |
| 0(3(1(x1))) | → | 3(2(1(2(0(x1))))) | (3) |
| 0(3(1(x1))) | → | 1(3(3(3(2(0(x1)))))) | (4) |
| 0(4(1(x1))) | → | 2(1(2(0(4(x1))))) | (5) |
| 0(0(4(5(x1)))) | → | 0(0(2(5(4(x1))))) | (6) |
| 0(1(4(1(x1)))) | → | 0(1(2(2(4(1(x1)))))) | (7) |
| 0(1(4(5(x1)))) | → | 4(0(1(2(5(4(x1)))))) | (8) |
| 0(1(5(1(x1)))) | → | 1(2(2(5(0(1(x1)))))) | (9) |
| 0(1(5(3(x1)))) | → | 0(5(3(2(1(x1))))) | (10) |
| 0(2(4(1(x1)))) | → | 1(3(3(2(0(4(x1)))))) | (11) |
| 0(2(4(1(x1)))) | → | 4(2(1(2(0(4(x1)))))) | (12) |
| 0(2(4(5(x1)))) | → | 0(2(2(5(0(4(x1)))))) | (13) |
| 0(3(1(5(x1)))) | → | 0(1(2(5(3(x1))))) | (14) |
| 0(3(1(5(x1)))) | → | 1(2(5(3(0(4(x1)))))) | (15) |
| 0(3(5(1(x1)))) | → | 1(2(5(3(0(x1))))) | (16) |
| 0(3(5(1(x1)))) | → | 0(5(2(1(2(3(x1)))))) | (17) |
| 0(3(5(5(x1)))) | → | 0(3(2(5(5(x1))))) | (18) |
| 0(4(0(1(x1)))) | → | 2(0(4(4(0(1(x1)))))) | (19) |
| 0(4(1(5(x1)))) | → | 1(2(5(0(4(x1))))) | (20) |
| 0(4(3(5(x1)))) | → | 0(4(3(2(5(4(x1)))))) | (21) |
| 0(4(5(1(x1)))) | → | 2(5(4(4(0(1(x1)))))) | (22) |
| 3(0(1(5(x1)))) | → | 3(1(4(0(5(4(x1)))))) | (23) |
| 3(0(3(1(x1)))) | → | 1(3(3(2(0(x1))))) | (24) |
| 3(0(3(5(x1)))) | → | 3(2(5(0(2(3(x1)))))) | (25) |
| 3(3(0(1(x1)))) | → | 0(1(3(2(2(3(x1)))))) | (26) |
| 3(4(5(1(x1)))) | → | 3(2(5(4(2(1(x1)))))) | (27) |
| 4(1(3(5(x1)))) | → | 1(2(5(3(4(4(x1)))))) | (28) |
| 4(1(5(1(x1)))) | → | 4(4(5(1(2(1(x1)))))) | (29) |
| 4(4(1(5(x1)))) | → | 4(1(2(5(4(x1))))) | (30) |
| 0(1(4(5(5(x1))))) | → | 0(5(1(4(2(5(x1)))))) | (31) |
| 0(2(1(4(5(x1))))) | → | 0(0(1(2(5(4(x1)))))) | (32) |
| 0(2(1(5(5(x1))))) | → | 0(1(2(2(5(5(x1)))))) | (33) |
| 0(4(2(4(1(x1))))) | → | 1(3(2(0(4(4(x1)))))) | (34) |
| 0(4(5(4(3(x1))))) | → | 2(5(0(4(4(3(x1)))))) | (35) |
| 0(5(1(5(1(x1))))) | → | 0(5(1(1(2(5(x1)))))) | (36) |
| 0(5(2(1(5(x1))))) | → | 1(2(5(5(0(4(x1)))))) | (37) |
| 0(5(2(4(1(x1))))) | → | 4(5(2(1(2(0(x1)))))) | (38) |
| 3(0(1(4(1(x1))))) | → | 0(4(4(1(3(1(x1)))))) | (39) |
| 3(0(1(4(1(x1))))) | → | 4(3(2(0(1(1(x1)))))) | (40) |
| 3(0(3(5(5(x1))))) | → | 3(3(2(5(0(5(x1)))))) | (41) |
| 3(0(5(3(1(x1))))) | → | 1(0(3(3(2(5(x1)))))) | (42) |
| 4(0(1(4(1(x1))))) | → | 4(4(0(1(3(1(x1)))))) | (43) |
| 4(0(1(5(1(x1))))) | → | 0(1(2(5(4(1(x1)))))) | (44) |
| 4(0(2(4(5(x1))))) | → | 4(0(2(5(0(4(x1)))))) | (45) |
| 4(1(1(5(1(x1))))) | → | 1(1(2(5(4(1(x1)))))) | (46) |
| 4(5(1(4(1(x1))))) | → | 4(4(1(2(1(5(x1)))))) | (47) |
| 4(5(2(3(1(x1))))) | → | 4(3(1(2(2(5(x1)))))) | (48) |
| 4(5(4(3(1(x1))))) | → | 4(1(2(5(3(4(x1)))))) | (49) |
| 4(5(5(3(1(x1))))) | → | 1(3(2(5(5(4(x1)))))) | (50) |
There are 125 ruless (increase limit for explicit display).
The dependency pairs are split into 1 component.
| 0#(5(2(1(5(x1))))) | → | 0#(4(x1)) | (171) |
| 0#(3(5(1(x1)))) | → | 0#(x1) | (121) |
| 4#(1(3(5(x1)))) | → | 3#(4(4(x1))) | (169) |
| 4#(0(2(4(5(x1))))) | → | 4#(x1) | (170) |
| 0#(5(2(4(1(x1))))) | → | 0#(x1) | (120) |
| 0#(2(4(1(x1)))) | → | 0#(4(x1)) | (80) |
| 4#(0(2(4(5(x1))))) | → | 0#(4(x1)) | (119) |
| 4#(5(4(3(1(x1))))) | → | 4#(x1) | (117) |
| 0#(4(3(5(x1)))) | → | 4#(x1) | (116) |
| 0#(1(1(x1))) | → | 0#(x1) | (114) |
| 4#(1(3(5(x1)))) | → | 4#(x1) | (113) |
| 0#(4(2(4(1(x1))))) | → | 4#(x1) | (112) |
| 4#(0(1(5(1(x1))))) | → | 4#(1(x1)) | (110) |
| 3#(0(1(4(1(x1))))) | → | 0#(1(1(x1))) | (109) |
| 0#(3(1(x1))) | → | 0#(x1) | (51) |
| 3#(3(0(1(x1)))) | → | 3#(x1) | (107) |
| 0#(2(1(4(5(x1))))) | → | 4#(x1) | (105) |
| 3#(0(1(5(x1)))) | → | 0#(5(4(x1))) | (104) |
| 4#(1(3(5(x1)))) | → | 4#(4(x1)) | (101) |
| 0#(4(1(x1))) | → | 4#(x1) | (159) |
| 0#(4(1(x1))) | → | 0#(4(x1)) | (95) |
| 0#(3(1(5(x1)))) | → | 3#(x1) | (94) |
| 0#(4(5(1(x1)))) | → | 0#(1(x1)) | (152) |
| 0#(4(0(1(x1)))) | → | 4#(4(0(1(x1)))) | (93) |
| 4#(1(1(5(1(x1))))) | → | 4#(1(x1)) | (92) |
| 0#(4(5(4(3(x1))))) | → | 0#(4(4(3(x1)))) | (91) |
| 0#(3(5(1(x1)))) | → | 3#(0(x1)) | (88) |
| 0#(5(2(1(5(x1))))) | → | 4#(x1) | (146) |
| 3#(0(3(5(5(x1))))) | → | 0#(5(x1)) | (144) |
| 0#(4(1(5(x1)))) | → | 4#(x1) | (85) |
| 0#(3(1(5(x1)))) | → | 4#(x1) | (143) |
| 0#(3(1(x1))) | → | 0#(x1) | (51) |
| 4#(4(1(5(x1)))) | → | 4#(x1) | (83) |
| 0#(3(1(5(x1)))) | → | 0#(4(x1)) | (81) |
| 4#(5(4(3(1(x1))))) | → | 3#(4(x1)) | (79) |
| 0#(2(4(1(x1)))) | → | 0#(4(x1)) | (80) |
| 0#(4(2(4(1(x1))))) | → | 0#(4(4(x1))) | (140) |
| 0#(4(5(1(x1)))) | → | 4#(0(1(x1))) | (139) |
| 0#(2(4(5(x1)))) | → | 4#(x1) | (138) |
| 4#(5(5(3(1(x1))))) | → | 4#(x1) | (73) |
| 0#(2(4(1(x1)))) | → | 4#(x1) | (70) |
| 0#(0(4(5(x1)))) | → | 4#(x1) | (136) |
| 3#(0(3(5(x1)))) | → | 3#(x1) | (135) |
| 3#(0(1(5(x1)))) | → | 4#(0(5(4(x1)))) | (134) |
| 0#(4(0(1(x1)))) | → | 0#(4(4(0(1(x1))))) | (66) |
| 0#(1(4(5(x1)))) | → | 4#(x1) | (64) |
| 3#(0(3(5(x1)))) | → | 0#(2(3(x1))) | (129) |
| 0#(2(4(5(x1)))) | → | 0#(4(x1)) | (130) |
| 0#(3(5(1(x1)))) | → | 3#(x1) | (128) |
| 0#(3(1(5(x1)))) | → | 3#(0(4(x1))) | (60) |
| 3#(0(3(1(x1)))) | → | 0#(x1) | (59) |
| 0#(4(5(4(3(x1))))) | → | 4#(4(3(x1))) | (125) |
| 3#(0(1(5(x1)))) | → | 4#(x1) | (58) |
| 0#(4(5(1(x1)))) | → | 4#(4(0(1(x1)))) | (56) |
| 0#(4(1(5(x1)))) | → | 0#(4(x1)) | (57) |
| 0#(2(4(1(x1)))) | → | 4#(x1) | (70) |
| 0#(4(2(4(1(x1))))) | → | 4#(4(x1)) | (123) |
| 0#(1(5(1(x1)))) | → | 0#(1(x1)) | (55) |
| 0#(3(1(x1))) | → | 0#(x1) | (51) |
| [0#(x1)] | = | x1 + 1 |
| [1(x1)] | = | x1 + 1 |
| [4(x1)] | = | x1 + 0 |
| [5(x1)] | = | x1 + 31599 |
| [3(x1)] | = | x1 + 0 |
| [4#(x1)] | = | x1 + 0 |
| [0(x1)] | = | x1 + 0 |
| [3#(x1)] | = | x1 + 2 |
| [2(x1)] | = | x1 + 0 |
| 0(3(5(5(x1)))) | → | 0(3(2(5(5(x1))))) | (18) |
| 4(5(5(3(1(x1))))) | → | 1(3(2(5(5(4(x1)))))) | (50) |
| 0(3(1(x1))) | → | 1(3(3(3(2(0(x1)))))) | (4) |
| 0(3(1(5(x1)))) | → | 1(2(5(3(0(4(x1)))))) | (15) |
| 0(1(4(5(x1)))) | → | 4(0(1(2(5(4(x1)))))) | (8) |
| 0(1(1(x1))) | → | 1(2(1(2(0(x1))))) | (1) |
| 0(3(1(x1))) | → | 3(2(1(2(0(x1))))) | (3) |
| 0(3(5(1(x1)))) | → | 1(2(5(3(0(x1))))) | (16) |
| 0(4(3(5(x1)))) | → | 0(4(3(2(5(4(x1)))))) | (21) |
| 0(5(1(5(1(x1))))) | → | 0(5(1(1(2(5(x1)))))) | (36) |
| 3(3(0(1(x1)))) | → | 0(1(3(2(2(3(x1)))))) | (26) |
| 0(4(0(1(x1)))) | → | 2(0(4(4(0(1(x1)))))) | (19) |
| 0(2(1(4(5(x1))))) | → | 0(0(1(2(5(4(x1)))))) | (32) |
| 0(3(5(1(x1)))) | → | 0(5(2(1(2(3(x1)))))) | (17) |
| 3(4(5(1(x1)))) | → | 3(2(5(4(2(1(x1)))))) | (27) |
| 0(4(2(4(1(x1))))) | → | 1(3(2(0(4(4(x1)))))) | (34) |
| 0(4(5(1(x1)))) | → | 2(5(4(4(0(1(x1)))))) | (22) |
| 4(1(3(5(x1)))) | → | 1(2(5(3(4(4(x1)))))) | (28) |
| 4(0(1(5(1(x1))))) | → | 0(1(2(5(4(1(x1)))))) | (44) |
| 0(4(1(x1))) | → | 2(1(2(0(4(x1))))) | (5) |
| 0(2(1(5(5(x1))))) | → | 0(1(2(2(5(5(x1)))))) | (33) |
| 0(1(5(3(x1)))) | → | 0(5(3(2(1(x1))))) | (10) |
| 3(0(1(4(1(x1))))) | → | 0(4(4(1(3(1(x1)))))) | (39) |
| 0(1(4(1(x1)))) | → | 0(1(2(2(4(1(x1)))))) | (7) |
| 0(4(1(5(x1)))) | → | 1(2(5(0(4(x1))))) | (20) |
| 3(0(3(5(x1)))) | → | 3(2(5(0(2(3(x1)))))) | (25) |
| 4(5(4(3(1(x1))))) | → | 4(1(2(5(3(4(x1)))))) | (49) |
| 4(4(1(5(x1)))) | → | 4(1(2(5(4(x1))))) | (30) |
| 0(3(1(5(x1)))) | → | 0(1(2(5(3(x1))))) | (14) |
| 0(1(4(5(5(x1))))) | → | 0(5(1(4(2(5(x1)))))) | (31) |
| 0(2(4(1(x1)))) | → | 4(2(1(2(0(4(x1)))))) | (12) |
| 4(0(2(4(5(x1))))) | → | 4(0(2(5(0(4(x1)))))) | (45) |
| 3(0(1(5(x1)))) | → | 3(1(4(0(5(4(x1)))))) | (23) |
| 3(0(3(1(x1)))) | → | 1(3(3(2(0(x1))))) | (24) |
| 0(2(4(1(x1)))) | → | 1(3(3(2(0(4(x1)))))) | (11) |
| 0(1(5(1(x1)))) | → | 1(2(2(5(0(1(x1)))))) | (9) |
| 0(2(4(5(x1)))) | → | 0(2(2(5(0(4(x1)))))) | (13) |
| 3(0(1(4(1(x1))))) | → | 4(3(2(0(1(1(x1)))))) | (40) |
| 0(0(4(5(x1)))) | → | 0(0(2(5(4(x1))))) | (6) |
| 0(5(2(4(1(x1))))) | → | 4(5(2(1(2(0(x1)))))) | (38) |
| 4(5(2(3(1(x1))))) | → | 4(3(1(2(2(5(x1)))))) | (48) |
| 4(5(1(4(1(x1))))) | → | 4(4(1(2(1(5(x1)))))) | (47) |
| 0(5(2(1(5(x1))))) | → | 1(2(5(5(0(4(x1)))))) | (37) |
| 3(0(3(5(5(x1))))) | → | 3(3(2(5(0(5(x1)))))) | (41) |
| 3(0(5(3(1(x1))))) | → | 1(0(3(3(2(5(x1)))))) | (42) |
| 4(1(1(5(1(x1))))) | → | 1(1(2(5(4(1(x1)))))) | (46) |
| 0(4(5(4(3(x1))))) | → | 2(5(0(4(4(3(x1)))))) | (35) |
| 4(1(5(1(x1)))) | → | 4(4(5(1(2(1(x1)))))) | (29) |
| 4(0(1(4(1(x1))))) | → | 4(4(0(1(3(1(x1)))))) | (43) |
| 0(3(1(x1))) | → | 1(3(2(2(0(x1))))) | (2) |
| 0#(5(2(1(5(x1))))) | → | 0#(4(x1)) | (171) |
| 0#(3(5(1(x1)))) | → | 0#(x1) | (121) |
| 4#(1(3(5(x1)))) | → | 3#(4(4(x1))) | (169) |
| 4#(0(2(4(5(x1))))) | → | 4#(x1) | (170) |
| 0#(5(2(4(1(x1))))) | → | 0#(x1) | (120) |
| 0#(2(4(1(x1)))) | → | 0#(4(x1)) | (80) |
| 4#(0(2(4(5(x1))))) | → | 0#(4(x1)) | (119) |
| 4#(5(4(3(1(x1))))) | → | 4#(x1) | (117) |
| 0#(4(3(5(x1)))) | → | 4#(x1) | (116) |
| 0#(1(1(x1))) | → | 0#(x1) | (114) |
| 4#(1(3(5(x1)))) | → | 4#(x1) | (113) |
| 0#(4(2(4(1(x1))))) | → | 4#(x1) | (112) |
| 4#(0(1(5(1(x1))))) | → | 4#(1(x1)) | (110) |
| 3#(0(1(4(1(x1))))) | → | 0#(1(1(x1))) | (109) |
| 0#(3(1(x1))) | → | 0#(x1) | (51) |
| 3#(3(0(1(x1)))) | → | 3#(x1) | (107) |
| 0#(2(1(4(5(x1))))) | → | 4#(x1) | (105) |
| 3#(0(1(5(x1)))) | → | 0#(5(4(x1))) | (104) |
| 4#(1(3(5(x1)))) | → | 4#(4(x1)) | (101) |
| 0#(4(1(x1))) | → | 4#(x1) | (159) |
| 0#(4(1(x1))) | → | 0#(4(x1)) | (95) |
| 0#(3(1(5(x1)))) | → | 3#(x1) | (94) |
| 0#(4(5(1(x1)))) | → | 0#(1(x1)) | (152) |
| 0#(4(0(1(x1)))) | → | 4#(4(0(1(x1)))) | (93) |
| 4#(1(1(5(1(x1))))) | → | 4#(1(x1)) | (92) |
| 0#(4(5(4(3(x1))))) | → | 0#(4(4(3(x1)))) | (91) |
| 0#(3(5(1(x1)))) | → | 3#(0(x1)) | (88) |
| 0#(5(2(1(5(x1))))) | → | 4#(x1) | (146) |
| 3#(0(3(5(5(x1))))) | → | 0#(5(x1)) | (144) |
| 0#(4(1(5(x1)))) | → | 4#(x1) | (85) |
| 0#(3(1(5(x1)))) | → | 4#(x1) | (143) |
| 0#(3(1(x1))) | → | 0#(x1) | (51) |
| 4#(4(1(5(x1)))) | → | 4#(x1) | (83) |
| 0#(3(1(5(x1)))) | → | 0#(4(x1)) | (81) |
| 4#(5(4(3(1(x1))))) | → | 3#(4(x1)) | (79) |
| 0#(2(4(1(x1)))) | → | 0#(4(x1)) | (80) |
| 0#(4(2(4(1(x1))))) | → | 0#(4(4(x1))) | (140) |
| 0#(4(5(1(x1)))) | → | 4#(0(1(x1))) | (139) |
| 0#(2(4(5(x1)))) | → | 4#(x1) | (138) |
| 4#(5(5(3(1(x1))))) | → | 4#(x1) | (73) |
| 0#(2(4(1(x1)))) | → | 4#(x1) | (70) |
| 0#(0(4(5(x1)))) | → | 4#(x1) | (136) |
| 3#(0(3(5(x1)))) | → | 3#(x1) | (135) |
| 3#(0(1(5(x1)))) | → | 4#(0(5(4(x1)))) | (134) |
| 0#(1(4(5(x1)))) | → | 4#(x1) | (64) |
| 3#(0(3(5(x1)))) | → | 0#(2(3(x1))) | (129) |
| 0#(2(4(5(x1)))) | → | 0#(4(x1)) | (130) |
| 0#(3(5(1(x1)))) | → | 3#(x1) | (128) |
| 0#(3(1(5(x1)))) | → | 3#(0(4(x1))) | (60) |
| 3#(0(3(1(x1)))) | → | 0#(x1) | (59) |
| 0#(4(5(4(3(x1))))) | → | 4#(4(3(x1))) | (125) |
| 3#(0(1(5(x1)))) | → | 4#(x1) | (58) |
| 0#(4(5(1(x1)))) | → | 4#(4(0(1(x1)))) | (56) |
| 0#(4(1(5(x1)))) | → | 0#(4(x1)) | (57) |
| 0#(2(4(1(x1)))) | → | 4#(x1) | (70) |
| 0#(4(2(4(1(x1))))) | → | 4#(4(x1)) | (123) |
| 0#(1(5(1(x1)))) | → | 0#(1(x1)) | (55) |
| 0#(3(1(x1))) | → | 0#(x1) | (51) |
The dependency pairs are split into 1 component.
| 0#(4(0(1(x1)))) | → | 0#(4(4(0(1(x1))))) | (66) |
| [0#(x1)] | = |
|
||||||||||||
| [1(x1)] | = |
|
||||||||||||
| [4(x1)] | = |
|
||||||||||||
| [5(x1)] | = |
|
||||||||||||
| [3(x1)] | = |
x1 +
|
||||||||||||
| [4#(x1)] | = |
|
||||||||||||
| [0(x1)] | = |
|
||||||||||||
| [3#(x1)] | = |
|
||||||||||||
| [2(x1)] | = |
|
| 0(3(5(5(x1)))) | → | 0(3(2(5(5(x1))))) | (18) |
| 4(5(5(3(1(x1))))) | → | 1(3(2(5(5(4(x1)))))) | (50) |
| 0(3(1(x1))) | → | 1(3(3(3(2(0(x1)))))) | (4) |
| 0(3(1(5(x1)))) | → | 1(2(5(3(0(4(x1)))))) | (15) |
| 0(1(4(5(x1)))) | → | 4(0(1(2(5(4(x1)))))) | (8) |
| 0(1(1(x1))) | → | 1(2(1(2(0(x1))))) | (1) |
| 0(3(1(x1))) | → | 3(2(1(2(0(x1))))) | (3) |
| 0(3(5(1(x1)))) | → | 1(2(5(3(0(x1))))) | (16) |
| 0(4(3(5(x1)))) | → | 0(4(3(2(5(4(x1)))))) | (21) |
| 0(5(1(5(1(x1))))) | → | 0(5(1(1(2(5(x1)))))) | (36) |
| 3(3(0(1(x1)))) | → | 0(1(3(2(2(3(x1)))))) | (26) |
| 0(4(0(1(x1)))) | → | 2(0(4(4(0(1(x1)))))) | (19) |
| 0(2(1(4(5(x1))))) | → | 0(0(1(2(5(4(x1)))))) | (32) |
| 0(3(5(1(x1)))) | → | 0(5(2(1(2(3(x1)))))) | (17) |
| 3(4(5(1(x1)))) | → | 3(2(5(4(2(1(x1)))))) | (27) |
| 0(4(2(4(1(x1))))) | → | 1(3(2(0(4(4(x1)))))) | (34) |
| 0(4(5(1(x1)))) | → | 2(5(4(4(0(1(x1)))))) | (22) |
| 4(1(3(5(x1)))) | → | 1(2(5(3(4(4(x1)))))) | (28) |
| 4(0(1(5(1(x1))))) | → | 0(1(2(5(4(1(x1)))))) | (44) |
| 0(4(1(x1))) | → | 2(1(2(0(4(x1))))) | (5) |
| 0(2(1(5(5(x1))))) | → | 0(1(2(2(5(5(x1)))))) | (33) |
| 0(1(5(3(x1)))) | → | 0(5(3(2(1(x1))))) | (10) |
| 3(0(1(4(1(x1))))) | → | 0(4(4(1(3(1(x1)))))) | (39) |
| 0(1(4(1(x1)))) | → | 0(1(2(2(4(1(x1)))))) | (7) |
| 0(4(1(5(x1)))) | → | 1(2(5(0(4(x1))))) | (20) |
| 3(0(3(5(x1)))) | → | 3(2(5(0(2(3(x1)))))) | (25) |
| 4(5(4(3(1(x1))))) | → | 4(1(2(5(3(4(x1)))))) | (49) |
| 4(4(1(5(x1)))) | → | 4(1(2(5(4(x1))))) | (30) |
| 0(3(1(5(x1)))) | → | 0(1(2(5(3(x1))))) | (14) |
| 0(1(4(5(5(x1))))) | → | 0(5(1(4(2(5(x1)))))) | (31) |
| 0(2(4(1(x1)))) | → | 4(2(1(2(0(4(x1)))))) | (12) |
| 4(0(2(4(5(x1))))) | → | 4(0(2(5(0(4(x1)))))) | (45) |
| 3(0(1(5(x1)))) | → | 3(1(4(0(5(4(x1)))))) | (23) |
| 3(0(3(1(x1)))) | → | 1(3(3(2(0(x1))))) | (24) |
| 0(2(4(1(x1)))) | → | 1(3(3(2(0(4(x1)))))) | (11) |
| 0(1(5(1(x1)))) | → | 1(2(2(5(0(1(x1)))))) | (9) |
| 0(2(4(5(x1)))) | → | 0(2(2(5(0(4(x1)))))) | (13) |
| 3(0(1(4(1(x1))))) | → | 4(3(2(0(1(1(x1)))))) | (40) |
| 0(0(4(5(x1)))) | → | 0(0(2(5(4(x1))))) | (6) |
| 0(5(2(4(1(x1))))) | → | 4(5(2(1(2(0(x1)))))) | (38) |
| 4(5(2(3(1(x1))))) | → | 4(3(1(2(2(5(x1)))))) | (48) |
| 4(5(1(4(1(x1))))) | → | 4(4(1(2(1(5(x1)))))) | (47) |
| 0(5(2(1(5(x1))))) | → | 1(2(5(5(0(4(x1)))))) | (37) |
| 3(0(3(5(5(x1))))) | → | 3(3(2(5(0(5(x1)))))) | (41) |
| 3(0(5(3(1(x1))))) | → | 1(0(3(3(2(5(x1)))))) | (42) |
| 4(1(1(5(1(x1))))) | → | 1(1(2(5(4(1(x1)))))) | (46) |
| 0(4(5(4(3(x1))))) | → | 2(5(0(4(4(3(x1)))))) | (35) |
| 4(1(5(1(x1)))) | → | 4(4(5(1(2(1(x1)))))) | (29) |
| 4(0(1(4(1(x1))))) | → | 4(4(0(1(3(1(x1)))))) | (43) |
| 0(3(1(x1))) | → | 1(3(2(2(0(x1))))) | (2) |
| 0#(4(0(1(x1)))) | → | 0#(4(4(0(1(x1))))) | (66) |
The dependency pairs are split into 0 components.