The rewrite relation of the following TRS is considered.
0(1(2(x1))) | → | 0(0(2(1(x1)))) | (1) |
0(1(2(x1))) | → | 0(2(1(3(x1)))) | (2) |
0(1(2(x1))) | → | 0(0(2(1(4(4(x1)))))) | (3) |
0(3(1(x1))) | → | 0(1(3(4(0(x1))))) | (4) |
0(3(1(x1))) | → | 0(1(3(4(4(x1))))) | (5) |
0(3(1(x1))) | → | 1(3(4(4(4(0(x1)))))) | (6) |
0(3(2(x1))) | → | 0(2(1(3(x1)))) | (7) |
0(3(2(x1))) | → | 0(2(3(4(x1)))) | (8) |
0(3(2(x1))) | → | 0(0(2(4(3(x1))))) | (9) |
0(3(2(x1))) | → | 0(2(1(4(3(x1))))) | (10) |
0(3(2(x1))) | → | 0(2(4(3(3(x1))))) | (11) |
0(3(2(x1))) | → | 0(2(1(3(3(4(x1)))))) | (12) |
0(3(2(x1))) | → | 0(2(3(4(5(5(x1)))))) | (13) |
0(3(2(x1))) | → | 2(4(4(3(4(0(x1)))))) | (14) |
0(4(1(x1))) | → | 0(1(4(4(x1)))) | (15) |
0(4(1(x1))) | → | 0(2(1(4(x1)))) | (16) |
0(4(2(x1))) | → | 0(2(1(4(x1)))) | (17) |
0(4(2(x1))) | → | 0(2(3(4(x1)))) | (18) |
0(4(2(x1))) | → | 0(2(4(3(x1)))) | (19) |
2(0(1(x1))) | → | 5(0(2(1(x1)))) | (20) |
2(3(1(x1))) | → | 1(3(5(2(x1)))) | (21) |
2(3(1(x1))) | → | 0(2(1(3(5(x1))))) | (22) |
2(3(1(x1))) | → | 1(4(3(5(2(x1))))) | (23) |
0(2(0(1(x1)))) | → | 5(0(0(2(1(x1))))) | (24) |
0(3(1(1(x1)))) | → | 0(1(4(1(3(4(x1)))))) | (25) |
0(3(2(1(x1)))) | → | 0(0(3(4(2(1(x1)))))) | (26) |
0(3(2(2(x1)))) | → | 1(3(4(0(2(2(x1)))))) | (27) |
0(4(1(2(x1)))) | → | 1(4(0(2(5(x1))))) | (28) |
0(4(3(2(x1)))) | → | 2(3(4(4(0(0(x1)))))) | (29) |
0(5(3(1(x1)))) | → | 0(1(4(3(5(4(x1)))))) | (30) |
0(5(3(1(x1)))) | → | 0(1(5(3(4(0(x1)))))) | (31) |
0(5(3(2(x1)))) | → | 0(2(4(5(3(x1))))) | (32) |
0(5(3(2(x1)))) | → | 0(2(5(3(3(x1))))) | (33) |
2(0(3(1(x1)))) | → | 2(0(1(3(5(2(x1)))))) | (34) |
2(0(4(1(x1)))) | → | 2(0(1(4(5(x1))))) | (35) |
2(5(3(2(x1)))) | → | 2(5(2(3(3(x1))))) | (36) |
2(5(4(2(x1)))) | → | 0(2(5(2(4(x1))))) | (37) |
0(0(3(2(1(x1))))) | → | 0(0(1(3(5(2(x1)))))) | (38) |
0(1(0(3(2(x1))))) | → | 0(1(4(3(2(0(x1)))))) | (39) |
0(1(0(3(2(x1))))) | → | 2(3(1(0(0(5(x1)))))) | (40) |
0(3(2(5(1(x1))))) | → | 0(2(5(1(3(3(x1)))))) | (41) |
0(5(1(1(2(x1))))) | → | 0(2(4(1(1(5(x1)))))) | (42) |
0(5(1(2(2(x1))))) | → | 0(2(5(2(1(2(x1)))))) | (43) |
0(5(3(2(1(x1))))) | → | 0(1(3(4(2(5(x1)))))) | (44) |
0(5(5(3(2(x1))))) | → | 0(2(5(1(3(5(x1)))))) | (45) |
2(0(3(1(1(x1))))) | → | 2(1(0(1(3(4(x1)))))) | (46) |
2(2(0(3(1(x1))))) | → | 1(3(0(2(5(2(x1)))))) | (47) |
2(2(0(5(1(x1))))) | → | 2(0(2(1(5(1(x1)))))) | (48) |
2(5(5(4(1(x1))))) | → | 5(5(2(1(3(4(x1)))))) | (49) |
There are 102 ruless (increase limit for explicit display).
The dependency pairs are split into 1 component.
0#(5(3(1(x1)))) | → | 0#(x1) | (108) |
0#(1(0(3(2(x1))))) | → | 2#(3(1(0(0(5(x1)))))) | (106) |
0#(1(0(3(2(x1))))) | → | 0#(0(5(x1))) | (99) |
0#(4(1(2(x1)))) | → | 0#(2(5(x1))) | (96) |
0#(4(3(2(x1)))) | → | 0#(x1) | (143) |
0#(3(2(2(x1)))) | → | 0#(2(2(x1))) | (87) |
0#(3(1(x1))) | → | 0#(x1) | (53) |
0#(3(2(x1))) | → | 0#(x1) | (81) |
0#(1(0(3(2(x1))))) | → | 0#(5(x1)) | (130) |
0#(1(0(3(2(x1))))) | → | 2#(0(x1)) | (128) |
0#(1(0(3(2(x1))))) | → | 0#(x1) | (73) |
2#(3(1(x1))) | → | 2#(x1) | (52) |
2#(0(3(1(x1)))) | → | 2#(x1) | (70) |
2#(2(0(3(1(x1))))) | → | 2#(x1) | (124) |
0#(0(3(2(1(x1))))) | → | 2#(x1) | (123) |
0#(4(3(2(x1)))) | → | 0#(0(x1)) | (112) |
0#(3(1(x1))) | → | 0#(x1) | (53) |
2#(3(1(x1))) | → | 2#(x1) | (52) |
2#(2(0(3(1(x1))))) | → | 0#(2(5(2(x1)))) | (110) |
[0#(x1)] | = |
|
||||||||||||
[1(x1)] | = |
|
||||||||||||
[4(x1)] | = |
|
||||||||||||
[5(x1)] | = |
|
||||||||||||
[3(x1)] | = |
|
||||||||||||
[2#(x1)] | = |
|
||||||||||||
[0(x1)] | = |
|
||||||||||||
[2(x1)] | = |
x1 +
|
0(4(2(x1))) | → | 0(2(3(4(x1)))) | (18) |
0(3(1(x1))) | → | 0(1(3(4(0(x1))))) | (4) |
0(4(1(x1))) | → | 0(1(4(4(x1)))) | (15) |
0(3(2(x1))) | → | 0(2(3(4(x1)))) | (8) |
0(1(2(x1))) | → | 0(0(2(1(x1)))) | (1) |
0(1(2(x1))) | → | 0(0(2(1(4(4(x1)))))) | (3) |
0(4(1(x1))) | → | 0(2(1(4(x1)))) | (16) |
2(3(1(x1))) | → | 1(3(5(2(x1)))) | (21) |
2(5(3(2(x1)))) | → | 2(5(2(3(3(x1))))) | (36) |
0(3(2(1(x1)))) | → | 0(0(3(4(2(1(x1)))))) | (26) |
0(4(2(x1))) | → | 0(2(4(3(x1)))) | (19) |
0(5(3(2(x1)))) | → | 0(2(4(5(3(x1))))) | (32) |
0(4(2(x1))) | → | 0(2(1(4(x1)))) | (17) |
0(3(2(2(x1)))) | → | 1(3(4(0(2(2(x1)))))) | (27) |
2(0(3(1(x1)))) | → | 2(0(1(3(5(2(x1)))))) | (34) |
2(3(1(x1))) | → | 0(2(1(3(5(x1))))) | (22) |
0(4(1(2(x1)))) | → | 1(4(0(2(5(x1))))) | (28) |
0(5(3(2(1(x1))))) | → | 0(1(3(4(2(5(x1)))))) | (44) |
0(3(1(x1))) | → | 0(1(3(4(4(x1))))) | (5) |
0(5(3(2(x1)))) | → | 0(2(5(3(3(x1))))) | (33) |
0(3(2(x1))) | → | 0(2(1(4(3(x1))))) | (10) |
0(1(0(3(2(x1))))) | → | 0(1(4(3(2(0(x1)))))) | (39) |
0(3(2(x1))) | → | 0(2(1(3(x1)))) | (7) |
2(0(1(x1))) | → | 5(0(2(1(x1)))) | (20) |
0(3(1(1(x1)))) | → | 0(1(4(1(3(4(x1)))))) | (25) |
2(5(5(4(1(x1))))) | → | 5(5(2(1(3(4(x1)))))) | (49) |
0(5(3(1(x1)))) | → | 0(1(4(3(5(4(x1)))))) | (30) |
0(3(2(x1))) | → | 2(4(4(3(4(0(x1)))))) | (14) |
0(5(3(1(x1)))) | → | 0(1(5(3(4(0(x1)))))) | (31) |
0(3(2(x1))) | → | 0(2(1(3(3(4(x1)))))) | (12) |
0(5(5(3(2(x1))))) | → | 0(2(5(1(3(5(x1)))))) | (45) |
2(3(1(x1))) | → | 1(4(3(5(2(x1))))) | (23) |
0(2(0(1(x1)))) | → | 5(0(0(2(1(x1))))) | (24) |
0(3(2(x1))) | → | 0(2(4(3(3(x1))))) | (11) |
0(3(2(x1))) | → | 0(0(2(4(3(x1))))) | (9) |
0(3(2(x1))) | → | 0(2(3(4(5(5(x1)))))) | (13) |
0(1(0(3(2(x1))))) | → | 2(3(1(0(0(5(x1)))))) | (40) |
0(3(1(x1))) | → | 1(3(4(4(4(0(x1)))))) | (6) |
0(0(3(2(1(x1))))) | → | 0(0(1(3(5(2(x1)))))) | (38) |
2(2(0(5(1(x1))))) | → | 2(0(2(1(5(1(x1)))))) | (48) |
2(2(0(3(1(x1))))) | → | 1(3(0(2(5(2(x1)))))) | (47) |
2(5(4(2(x1)))) | → | 0(2(5(2(4(x1))))) | (37) |
0(3(2(5(1(x1))))) | → | 0(2(5(1(3(3(x1)))))) | (41) |
0(5(1(1(2(x1))))) | → | 0(2(4(1(1(5(x1)))))) | (42) |
2(0(3(1(1(x1))))) | → | 2(1(0(1(3(4(x1)))))) | (46) |
2(0(4(1(x1)))) | → | 2(0(1(4(5(x1))))) | (35) |
0(4(3(2(x1)))) | → | 2(3(4(4(0(0(x1)))))) | (29) |
0(5(1(2(2(x1))))) | → | 0(2(5(2(1(2(x1)))))) | (43) |
0(1(2(x1))) | → | 0(2(1(3(x1)))) | (2) |
0#(1(0(3(2(x1))))) | → | 2#(3(1(0(0(5(x1)))))) | (106) |
0#(1(0(3(2(x1))))) | → | 0#(0(5(x1))) | (99) |
0#(4(1(2(x1)))) | → | 0#(2(5(x1))) | (96) |
0#(1(0(3(2(x1))))) | → | 0#(5(x1)) | (130) |
0#(1(0(3(2(x1))))) | → | 2#(0(x1)) | (128) |
0#(1(0(3(2(x1))))) | → | 0#(x1) | (73) |
2#(0(3(1(x1)))) | → | 2#(x1) | (70) |
2#(2(0(3(1(x1))))) | → | 2#(x1) | (124) |
0#(0(3(2(1(x1))))) | → | 2#(x1) | (123) |
2#(2(0(3(1(x1))))) | → | 0#(2(5(2(x1)))) | (110) |
The dependency pairs are split into 2 components.
2#(3(1(x1))) | → | 2#(x1) | (52) |
2#(3(1(x1))) | → | 2#(x1) | (52) |
[0#(x1)] | = |
|
||||||||||||
[1(x1)] | = |
|
||||||||||||
[4(x1)] | = |
|
||||||||||||
[5(x1)] | = |
|
||||||||||||
[3(x1)] | = |
|
||||||||||||
[2#(x1)] | = |
|
||||||||||||
[0(x1)] | = |
|
||||||||||||
[2(x1)] | = |
|
0(4(2(x1))) | → | 0(2(3(4(x1)))) | (18) |
0(3(1(x1))) | → | 0(1(3(4(0(x1))))) | (4) |
0(4(1(x1))) | → | 0(1(4(4(x1)))) | (15) |
0(3(2(x1))) | → | 0(2(3(4(x1)))) | (8) |
0(1(2(x1))) | → | 0(0(2(1(x1)))) | (1) |
0(1(2(x1))) | → | 0(0(2(1(4(4(x1)))))) | (3) |
0(4(1(x1))) | → | 0(2(1(4(x1)))) | (16) |
2(3(1(x1))) | → | 1(3(5(2(x1)))) | (21) |
2(5(3(2(x1)))) | → | 2(5(2(3(3(x1))))) | (36) |
0(3(2(1(x1)))) | → | 0(0(3(4(2(1(x1)))))) | (26) |
0(4(2(x1))) | → | 0(2(4(3(x1)))) | (19) |
0(5(3(2(x1)))) | → | 0(2(4(5(3(x1))))) | (32) |
0(4(2(x1))) | → | 0(2(1(4(x1)))) | (17) |
0(3(2(2(x1)))) | → | 1(3(4(0(2(2(x1)))))) | (27) |
2(0(3(1(x1)))) | → | 2(0(1(3(5(2(x1)))))) | (34) |
2(3(1(x1))) | → | 0(2(1(3(5(x1))))) | (22) |
0(4(1(2(x1)))) | → | 1(4(0(2(5(x1))))) | (28) |
0(5(3(2(1(x1))))) | → | 0(1(3(4(2(5(x1)))))) | (44) |
0(3(1(x1))) | → | 0(1(3(4(4(x1))))) | (5) |
0(5(3(2(x1)))) | → | 0(2(5(3(3(x1))))) | (33) |
0(3(2(x1))) | → | 0(2(1(4(3(x1))))) | (10) |
0(1(0(3(2(x1))))) | → | 0(1(4(3(2(0(x1)))))) | (39) |
0(3(2(x1))) | → | 0(2(1(3(x1)))) | (7) |
2(0(1(x1))) | → | 5(0(2(1(x1)))) | (20) |
0(3(1(1(x1)))) | → | 0(1(4(1(3(4(x1)))))) | (25) |
2(5(5(4(1(x1))))) | → | 5(5(2(1(3(4(x1)))))) | (49) |
0(5(3(1(x1)))) | → | 0(1(4(3(5(4(x1)))))) | (30) |
0(3(2(x1))) | → | 2(4(4(3(4(0(x1)))))) | (14) |
0(5(3(1(x1)))) | → | 0(1(5(3(4(0(x1)))))) | (31) |
0(3(2(x1))) | → | 0(2(1(3(3(4(x1)))))) | (12) |
0(5(5(3(2(x1))))) | → | 0(2(5(1(3(5(x1)))))) | (45) |
2(3(1(x1))) | → | 1(4(3(5(2(x1))))) | (23) |
0(2(0(1(x1)))) | → | 5(0(0(2(1(x1))))) | (24) |
0(3(2(x1))) | → | 0(2(4(3(3(x1))))) | (11) |
0(3(2(x1))) | → | 0(0(2(4(3(x1))))) | (9) |
0(3(2(x1))) | → | 0(2(3(4(5(5(x1)))))) | (13) |
0(1(0(3(2(x1))))) | → | 2(3(1(0(0(5(x1)))))) | (40) |
0(3(1(x1))) | → | 1(3(4(4(4(0(x1)))))) | (6) |
0(0(3(2(1(x1))))) | → | 0(0(1(3(5(2(x1)))))) | (38) |
2(2(0(5(1(x1))))) | → | 2(0(2(1(5(1(x1)))))) | (48) |
2(2(0(3(1(x1))))) | → | 1(3(0(2(5(2(x1)))))) | (47) |
2(5(4(2(x1)))) | → | 0(2(5(2(4(x1))))) | (37) |
0(3(2(5(1(x1))))) | → | 0(2(5(1(3(3(x1)))))) | (41) |
0(5(1(1(2(x1))))) | → | 0(2(4(1(1(5(x1)))))) | (42) |
2(0(3(1(1(x1))))) | → | 2(1(0(1(3(4(x1)))))) | (46) |
2(0(4(1(x1)))) | → | 2(0(1(4(5(x1))))) | (35) |
0(4(3(2(x1)))) | → | 2(3(4(4(0(0(x1)))))) | (29) |
0(5(1(2(2(x1))))) | → | 0(2(5(2(1(2(x1)))))) | (43) |
0(1(2(x1))) | → | 0(2(1(3(x1)))) | (2) |
2#(3(1(x1))) | → | 2#(x1) | (52) |
2#(3(1(x1))) | → | 2#(x1) | (52) |
The dependency pairs are split into 0 components.
0#(3(1(x1))) | → | 0#(x1) | (53) |
0#(3(2(2(x1)))) | → | 0#(2(2(x1))) | (87) |
0#(3(2(x1))) | → | 0#(x1) | (81) |
0#(5(3(1(x1)))) | → | 0#(x1) | (108) |
0#(3(1(x1))) | → | 0#(x1) | (53) |
0#(4(3(2(x1)))) | → | 0#(x1) | (143) |
0#(4(3(2(x1)))) | → | 0#(0(x1)) | (112) |
[0#(x1)] | = |
|
||||||||||||
[1(x1)] | = |
|
||||||||||||
[4(x1)] | = |
|
||||||||||||
[5(x1)] | = |
|
||||||||||||
[3(x1)] | = |
|
||||||||||||
[2#(x1)] | = |
|
||||||||||||
[0(x1)] | = |
|
||||||||||||
[2(x1)] | = |
|
0(4(2(x1))) | → | 0(2(3(4(x1)))) | (18) |
0(3(1(x1))) | → | 0(1(3(4(0(x1))))) | (4) |
0(4(1(x1))) | → | 0(1(4(4(x1)))) | (15) |
0(3(2(x1))) | → | 0(2(3(4(x1)))) | (8) |
0(1(2(x1))) | → | 0(0(2(1(x1)))) | (1) |
0(1(2(x1))) | → | 0(0(2(1(4(4(x1)))))) | (3) |
0(4(1(x1))) | → | 0(2(1(4(x1)))) | (16) |
2(3(1(x1))) | → | 1(3(5(2(x1)))) | (21) |
2(5(3(2(x1)))) | → | 2(5(2(3(3(x1))))) | (36) |
0(3(2(1(x1)))) | → | 0(0(3(4(2(1(x1)))))) | (26) |
0(4(2(x1))) | → | 0(2(4(3(x1)))) | (19) |
0(5(3(2(x1)))) | → | 0(2(4(5(3(x1))))) | (32) |
0(4(2(x1))) | → | 0(2(1(4(x1)))) | (17) |
0(3(2(2(x1)))) | → | 1(3(4(0(2(2(x1)))))) | (27) |
2(0(3(1(x1)))) | → | 2(0(1(3(5(2(x1)))))) | (34) |
2(3(1(x1))) | → | 0(2(1(3(5(x1))))) | (22) |
0(4(1(2(x1)))) | → | 1(4(0(2(5(x1))))) | (28) |
0(5(3(2(1(x1))))) | → | 0(1(3(4(2(5(x1)))))) | (44) |
0(3(1(x1))) | → | 0(1(3(4(4(x1))))) | (5) |
0(5(3(2(x1)))) | → | 0(2(5(3(3(x1))))) | (33) |
0(3(2(x1))) | → | 0(2(1(4(3(x1))))) | (10) |
0(1(0(3(2(x1))))) | → | 0(1(4(3(2(0(x1)))))) | (39) |
0(3(2(x1))) | → | 0(2(1(3(x1)))) | (7) |
2(0(1(x1))) | → | 5(0(2(1(x1)))) | (20) |
0(3(1(1(x1)))) | → | 0(1(4(1(3(4(x1)))))) | (25) |
2(5(5(4(1(x1))))) | → | 5(5(2(1(3(4(x1)))))) | (49) |
0(5(3(1(x1)))) | → | 0(1(4(3(5(4(x1)))))) | (30) |
0(3(2(x1))) | → | 2(4(4(3(4(0(x1)))))) | (14) |
0(5(3(1(x1)))) | → | 0(1(5(3(4(0(x1)))))) | (31) |
0(3(2(x1))) | → | 0(2(1(3(3(4(x1)))))) | (12) |
0(5(5(3(2(x1))))) | → | 0(2(5(1(3(5(x1)))))) | (45) |
2(3(1(x1))) | → | 1(4(3(5(2(x1))))) | (23) |
0(2(0(1(x1)))) | → | 5(0(0(2(1(x1))))) | (24) |
0(3(2(x1))) | → | 0(2(4(3(3(x1))))) | (11) |
0(3(2(x1))) | → | 0(0(2(4(3(x1))))) | (9) |
0(3(2(x1))) | → | 0(2(3(4(5(5(x1)))))) | (13) |
0(1(0(3(2(x1))))) | → | 2(3(1(0(0(5(x1)))))) | (40) |
0(3(1(x1))) | → | 1(3(4(4(4(0(x1)))))) | (6) |
0(0(3(2(1(x1))))) | → | 0(0(1(3(5(2(x1)))))) | (38) |
2(2(0(5(1(x1))))) | → | 2(0(2(1(5(1(x1)))))) | (48) |
2(2(0(3(1(x1))))) | → | 1(3(0(2(5(2(x1)))))) | (47) |
2(5(4(2(x1)))) | → | 0(2(5(2(4(x1))))) | (37) |
0(3(2(5(1(x1))))) | → | 0(2(5(1(3(3(x1)))))) | (41) |
0(5(1(1(2(x1))))) | → | 0(2(4(1(1(5(x1)))))) | (42) |
2(0(3(1(1(x1))))) | → | 2(1(0(1(3(4(x1)))))) | (46) |
2(0(4(1(x1)))) | → | 2(0(1(4(5(x1))))) | (35) |
0(4(3(2(x1)))) | → | 2(3(4(4(0(0(x1)))))) | (29) |
0(5(1(2(2(x1))))) | → | 0(2(5(2(1(2(x1)))))) | (43) |
0(1(2(x1))) | → | 0(2(1(3(x1)))) | (2) |
0#(3(1(x1))) | → | 0#(x1) | (53) |
0#(3(2(2(x1)))) | → | 0#(2(2(x1))) | (87) |
0#(3(2(x1))) | → | 0#(x1) | (81) |
0#(5(3(1(x1)))) | → | 0#(x1) | (108) |
0#(3(1(x1))) | → | 0#(x1) | (53) |
0#(4(3(2(x1)))) | → | 0#(x1) | (143) |
0#(4(3(2(x1)))) | → | 0#(0(x1)) | (112) |
The dependency pairs are split into 0 components.