Certification Problem

Input (TPDB SRS_Standard/ICFP_2010/214091)

The rewrite relation of the following TRS is considered.

0(1(2(x1))) 0(2(1(0(x1)))) (1)
0(1(2(x1))) 1(0(2(3(x1)))) (2)
0(1(2(x1))) 0(2(4(1(5(x1))))) (3)
0(1(2(x1))) 0(3(2(1(0(x1))))) (4)
0(1(2(x1))) 1(0(3(2(3(x1))))) (5)
0(1(2(x1))) 0(1(3(4(2(3(x1)))))) (6)
0(5(2(x1))) 0(2(4(5(3(x1))))) (7)
0(5(2(x1))) 5(4(2(3(0(4(x1)))))) (8)
2(0(1(x1))) 3(0(2(1(x1)))) (9)
2(0(1(x1))) 0(2(1(1(4(x1))))) (10)
2(0(1(x1))) 0(3(2(4(1(x1))))) (11)
2(0(1(x1))) 3(0(2(1(4(x1))))) (12)
2(0(1(x1))) 0(2(2(3(4(1(x1)))))) (13)
2(0(1(x1))) 0(3(2(3(1(1(x1)))))) (14)
2(0(1(x1))) 4(0(4(2(1(4(x1)))))) (15)
2(5(1(x1))) 0(2(1(5(1(x1))))) (16)
2(5(1(x1))) 1(4(5(4(2(x1))))) (17)
2(5(1(x1))) 5(0(2(1(4(x1))))) (18)
2(5(1(x1))) 5(2(1(4(1(x1))))) (19)
2(5(1(x1))) 1(5(0(2(4(1(x1)))))) (20)
2(5(1(x1))) 5(2(1(1(1(1(x1)))))) (21)
0(1(2(1(x1)))) 3(1(4(0(2(1(x1)))))) (22)
0(1(3(1(x1)))) 5(0(3(1(1(x1))))) (23)
0(1(3(1(x1)))) 1(0(3(4(2(1(x1)))))) (24)
0(1(5(1(x1)))) 5(0(3(1(1(x1))))) (25)
0(2(1(2(x1)))) 0(2(2(1(5(x1))))) (26)
0(2(5(1(x1)))) 1(1(5(0(2(1(x1)))))) (27)
0(5(3(1(x1)))) 0(1(4(4(3(5(x1)))))) (28)
0(5(5(2(x1)))) 5(4(2(3(5(0(x1)))))) (29)
2(0(1(2(x1)))) 0(2(3(2(1(1(x1)))))) (30)
2(0(1(2(x1)))) 4(0(2(1(1(2(x1)))))) (31)
2(0(4(1(x1)))) 3(0(2(4(1(x1))))) (32)
2(0(5(1(x1)))) 5(4(2(1(0(x1))))) (33)
2(2(5(1(x1)))) 3(2(2(4(5(1(x1)))))) (34)
2(4(0(1(x1)))) 1(0(2(4(4(x1))))) (35)
2(4(0(1(x1)))) 3(0(0(2(4(1(x1)))))) (36)
2(4(0(1(x1)))) 5(4(0(2(1(1(x1)))))) (37)
2(5(2(1(x1)))) 1(5(2(2(3(1(x1)))))) (38)
2(5(4(1(x1)))) 4(5(2(1(4(4(x1)))))) (39)
2(5(5(1(x1)))) 1(5(4(2(4(5(x1)))))) (40)
2(5(5(2(x1)))) 5(5(2(3(2(x1))))) (41)
0(1(3(0(1(x1))))) 0(3(1(0(1(1(x1)))))) (42)
0(2(4(3(1(x1))))) 1(3(4(2(3(0(x1)))))) (43)
0(2(4(3(1(x1))))) 4(0(3(2(1(0(x1)))))) (44)
0(2(5(3(1(x1))))) 5(0(2(3(5(1(x1)))))) (45)
2(0(5(4(1(x1))))) 0(4(5(3(2(1(x1)))))) (46)
2(2(0(1(2(x1))))) 2(4(0(2(2(1(x1)))))) (47)
2(4(0(5(1(x1))))) 1(4(5(0(4(2(x1)))))) (48)
2(4(2(3(1(x1))))) 4(2(2(3(3(1(x1)))))) (49)
2(5(2(0(1(x1))))) 0(2(4(1(5(2(x1)))))) (50)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by NaTT @ termCOMP 2023)

1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
0#(1(2(x1))) 2#(3(x1)) (51)
0#(1(2(x1))) 0#(2(1(0(x1)))) (52)
2#(0(1(x1))) 0#(3(2(3(1(1(x1)))))) (53)
2#(0(1(x1))) 2#(3(4(1(x1)))) (54)
0#(1(3(1(x1)))) 2#(1(x1)) (55)
2#(5(1(x1))) 2#(1(5(1(x1)))) (56)
0#(1(2(1(x1)))) 0#(2(1(x1))) (57)
2#(0(1(2(x1)))) 2#(3(2(1(1(x1))))) (58)
2#(0(1(2(x1)))) 2#(1(1(2(x1)))) (59)
0#(1(2(x1))) 0#(x1) (60)
2#(0(1(2(x1)))) 0#(2(1(1(2(x1))))) (61)
0#(2(5(3(1(x1))))) 0#(2(3(5(1(x1))))) (62)
2#(5(1(x1))) 0#(2(1(4(x1)))) (63)
2#(5(2(0(1(x1))))) 2#(4(1(5(2(x1))))) (64)
2#(0(1(x1))) 0#(4(2(1(4(x1))))) (65)
2#(0(4(1(x1)))) 2#(4(1(x1))) (66)
2#(0(1(2(x1)))) 2#(1(1(x1))) (67)
0#(5(2(x1))) 0#(2(4(5(3(x1))))) (68)
2#(5(1(x1))) 2#(x1) (69)
2#(4(2(3(1(x1))))) 2#(2(3(3(1(x1))))) (70)
0#(2(1(2(x1)))) 0#(2(2(1(5(x1))))) (71)
2#(5(1(x1))) 2#(1(4(1(x1)))) (72)
2#(0(5(1(x1)))) 2#(1(0(x1))) (73)
0#(1(2(x1))) 2#(3(x1)) (51)
0#(2(5(3(1(x1))))) 2#(3(5(1(x1)))) (74)
0#(5(5(2(x1)))) 0#(x1) (75)
2#(0(5(1(x1)))) 0#(x1) (76)
2#(5(4(1(x1)))) 2#(1(4(4(x1)))) (77)
2#(2(5(1(x1)))) 2#(2(4(5(1(x1))))) (78)
2#(0(1(x1))) 2#(1(4(x1))) (79)
0#(5(2(x1))) 0#(4(x1)) (80)
2#(5(1(x1))) 0#(2(4(1(x1)))) (81)
2#(5(5(2(x1)))) 2#(3(2(x1))) (82)
2#(0(5(4(1(x1))))) 0#(4(5(3(2(1(x1)))))) (83)
0#(1(3(0(1(x1))))) 0#(3(1(0(1(1(x1)))))) (84)
2#(5(2(0(1(x1))))) 2#(x1) (85)
2#(0(1(x1))) 2#(1(1(4(x1)))) (86)
0#(2(1(2(x1)))) 2#(2(1(5(x1)))) (87)
0#(1(2(x1))) 2#(1(0(x1))) (88)
0#(1(2(x1))) 0#(1(3(4(2(3(x1)))))) (89)
0#(2(5(1(x1)))) 2#(1(x1)) (90)
2#(5(2(1(x1)))) 2#(3(1(x1))) (91)
2#(5(1(x1))) 2#(1(1(1(1(x1))))) (92)
2#(4(0(1(x1)))) 0#(0(2(4(1(x1))))) (93)
2#(0(1(2(x1)))) 0#(2(3(2(1(1(x1)))))) (94)
2#(5(2(0(1(x1))))) 0#(2(4(1(5(2(x1)))))) (95)
0#(2(5(1(x1)))) 0#(2(1(x1))) (96)
0#(1(3(0(1(x1))))) 0#(1(1(x1))) (97)
2#(0(1(x1))) 2#(1(x1)) (98)
2#(4(0(1(x1)))) 0#(2(4(1(x1)))) (99)
2#(0(1(x1))) 0#(2(1(1(4(x1))))) (100)
0#(5(2(x1))) 2#(3(0(4(x1)))) (101)
2#(5(1(x1))) 0#(2(1(5(1(x1))))) (102)
2#(4(0(1(x1)))) 0#(2(1(1(x1)))) (103)
0#(2(4(3(1(x1))))) 0#(3(2(1(0(x1))))) (104)
2#(0(1(x1))) 0#(2(1(x1))) (105)
2#(5(1(x1))) 2#(4(1(x1))) (106)
2#(4(2(3(1(x1))))) 2#(3(3(1(x1)))) (107)
0#(1(2(x1))) 2#(3(x1)) (51)
2#(4(0(5(1(x1))))) 0#(4(2(x1))) (108)
0#(1(2(x1))) 0#(x1) (60)
2#(4(0(1(x1)))) 0#(2(4(4(x1)))) (109)
2#(0(1(x1))) 0#(2(1(4(x1)))) (110)
2#(0(5(4(1(x1))))) 2#(1(x1)) (111)
2#(0(1(x1))) 2#(1(4(x1))) (79)
0#(1(2(x1))) 0#(3(2(1(0(x1))))) (112)
0#(2(4(3(1(x1))))) 0#(x1) (113)
2#(0(1(x1))) 2#(4(1(x1))) (114)
2#(0(4(1(x1)))) 0#(2(4(1(x1)))) (115)
0#(5(5(2(x1)))) 2#(3(5(0(x1)))) (116)
2#(0(1(x1))) 2#(3(1(1(x1)))) (117)
0#(5(3(1(x1)))) 0#(1(4(4(3(5(x1)))))) (118)
2#(0(1(x1))) 2#(2(3(4(1(x1))))) (119)
2#(5(2(1(x1)))) 2#(2(3(1(x1)))) (120)
0#(1(3(1(x1)))) 0#(3(4(2(1(x1))))) (121)
0#(1(2(x1))) 0#(2(4(1(5(x1))))) (122)
0#(1(2(x1))) 2#(1(0(x1))) (88)
2#(0(1(x1))) 0#(2(2(3(4(1(x1)))))) (123)
0#(1(2(x1))) 0#(3(2(3(x1)))) (124)
2#(2(0(1(2(x1))))) 0#(2(2(1(x1)))) (125)
2#(0(1(x1))) 0#(3(2(4(1(x1))))) (126)
2#(2(0(1(2(x1))))) 2#(1(x1)) (127)
0#(2(4(3(1(x1))))) 2#(1(0(x1))) (128)
2#(5(5(1(x1)))) 2#(4(5(x1))) (129)
2#(5(1(x1))) 2#(1(4(x1))) (130)
0#(1(2(x1))) 2#(4(1(5(x1)))) (131)
2#(2(5(1(x1)))) 2#(4(5(1(x1)))) (132)
0#(1(3(1(x1)))) 0#(3(1(1(x1)))) (133)
2#(4(0(5(1(x1))))) 2#(x1) (134)
2#(2(0(1(2(x1))))) 2#(4(0(2(2(1(x1)))))) (135)
0#(2(4(3(1(x1))))) 2#(3(0(x1))) (136)
0#(2(1(2(x1)))) 2#(1(5(x1))) (137)
0#(1(2(x1))) 0#(2(3(x1))) (138)
0#(5(2(x1))) 2#(4(5(3(x1)))) (139)
2#(4(0(1(x1)))) 2#(4(4(x1))) (140)
2#(4(0(1(x1)))) 2#(1(1(x1))) (141)
0#(2(4(3(1(x1))))) 0#(x1) (113)
2#(4(0(1(x1)))) 2#(4(1(x1))) (142)
0#(1(5(1(x1)))) 0#(3(1(1(x1)))) (143)
2#(2(0(1(2(x1))))) 2#(2(1(x1))) (144)

1.1 Dependency Graph Processor

The dependency pairs are split into 2 components.