The rewrite relation of the following TRS is considered.
There are 158 ruless (increase limit for explicit display).
There are 239 ruless (increase limit for explicit display).
The dependency pairs are split into 1 component.
0#(1(0(x1))) | → | 0#(5(0(x1))) | (159) |
0#(5(1(0(x1)))) | → | 0#(0(x1)) | (287) |
0#(1(0(x1))) | → | 0#(2(x1)) | (268) |
0#(1(0(x1))) | → | 0#(0(2(x1))) | (260) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(4(4(x1))))) | → | 0#(x1) | (254) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(4(4(x1))))) | → | 0#(x1) | (254) |
0#(1(0(x1))) | → | 0#(2(x1)) | (268) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(2(x1))) | (260) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(0(1(0(x1)))) | → | 0#(0(x1)) | (171) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(5(0(x1))) | (159) |
0#(0(0(0(x1)))) | → | 0#(2(0(x1))) | (316) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(1(0(x1)))) | → | 0#(1(x1)) | (225) |
0#(1(0(x1))) | → | 0#(2(x1)) | (268) |
0#(1(0(4(x1)))) | → | 0#(x1) | (223) |
0#(1(0(4(x1)))) | → | 0#(x1) | (223) |
0#(5(1(0(x1)))) | → | 0#(0(x1)) | (287) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(5(4(4(0(x1))))) | → | 0#(2(x1)) | (216) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(5(1(0(x1)))) | → | 0#(0(x1)) | (287) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(0(x1)))) | → | 0#(0(4(x1))) | (213) |
0#(1(0(x1))) | → | 0#(2(0(x1))) | (282) |
0#(1(1(0(x1)))) | → | 0#(0(x1)) | (202) |
0#(1(1(0(x1)))) | → | 0#(1(0(5(3(1(x1)))))) | (212) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(4(x1)))) | → | 0#(0(4(x1))) | (207) |
0#(1(1(0(x1)))) | → | 0#(0(1(x1))) | (206) |
0#(1(0(x1))) | → | 0#(2(x1)) | (268) |
0#(1(0(4(x1)))) | → | 0#(2(0(x1))) | (204) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(1(0(x1)))) | → | 0#(0(x1)) | (202) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(1(0(x1)))) | → | 0#(0(x1)) | (202) |
0#(0(0(0(x1)))) | → | 0#(0(0(2(0(x1))))) | (290) |
0#(0(0(0(x1)))) | → | 0#(0(2(0(x1)))) | (199) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(5(1(0(x1)))) | → | 0#(0(x1)) | (287) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(2(0(x1))) | (282) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(4(4(x1))))) | → | 0#(0(x1)) | (276) |
0#(1(0(x1))) | → | 0#(0(2(x1))) | (260) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(0(1(0(x1)))) | → | 0#(0(x1)) | (171) |
0#(1(0(0(x1)))) | → | 0#(0(0(x1))) | (161) |
0#(0(1(0(x1)))) | → | 0#(0(x1)) | (171) |
0#(2(0(1(0(x1))))) | → | 0#(0(x1)) | (269) |
0#(1(0(x1))) | → | 0#(5(0(x1))) | (159) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(2(x1)) | (268) |
0#(1(1(0(x1)))) | → | 0#(1(0(x1))) | (166) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(0(x1)))) | → | 0#(0(0(x1))) | (161) |
0#(1(0(x1))) | → | 0#(5(0(x1))) | (159) |
[0#(x1)] | = | x1 + 0 |
[1(x1)] | = | x1 + 0 |
[4(x1)] | = | x1 + 0 |
[5(x1)] | = | x1 + 0 |
[3(x1)] | = | x1 + 0 |
[0(x1)] | = | x1 + 1 |
[2(x1)] | = | x1 + 0 |
There are 158 ruless (increase limit for explicit display).
(w.r.t. the implicit argument filter of the reduction pair), the pairs0#(1(0(x1))) | → | 0#(2(x1)) | (268) |
0#(1(0(4(4(x1))))) | → | 0#(x1) | (254) |
0#(1(0(4(4(x1))))) | → | 0#(x1) | (254) |
0#(1(0(x1))) | → | 0#(2(x1)) | (268) |
0#(0(1(0(x1)))) | → | 0#(0(x1)) | (171) |
0#(0(0(0(x1)))) | → | 0#(2(0(x1))) | (316) |
0#(1(1(0(x1)))) | → | 0#(1(x1)) | (225) |
0#(1(0(x1))) | → | 0#(2(x1)) | (268) |
0#(1(0(4(x1)))) | → | 0#(x1) | (223) |
0#(1(0(4(x1)))) | → | 0#(x1) | (223) |
0#(5(4(4(0(x1))))) | → | 0#(2(x1)) | (216) |
0#(1(0(0(x1)))) | → | 0#(0(4(x1))) | (213) |
0#(1(0(x1))) | → | 0#(2(x1)) | (268) |
0#(0(0(0(x1)))) | → | 0#(0(2(0(x1)))) | (199) |
0#(0(1(0(x1)))) | → | 0#(0(x1)) | (171) |
0#(0(1(0(x1)))) | → | 0#(0(x1)) | (171) |
0#(2(0(1(0(x1))))) | → | 0#(0(x1)) | (269) |
0#(1(0(x1))) | → | 0#(2(x1)) | (268) |
The dependency pairs are split into 1 component.
0#(1(0(x1))) | → | 0#(5(0(x1))) | (159) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(1(0(x1)))) | → | 0#(0(x1)) | (202) |
0#(5(1(0(x1)))) | → | 0#(0(x1)) | (287) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(0(x1)))) | → | 0#(0(0(x1))) | (161) |
0#(1(1(0(x1)))) | → | 0#(0(1(x1))) | (206) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(5(1(0(x1)))) | → | 0#(0(x1)) | (287) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(4(4(x1))))) | → | 0#(0(x1)) | (276) |
0#(5(1(0(x1)))) | → | 0#(0(x1)) | (287) |
0#(5(1(0(x1)))) | → | 0#(0(x1)) | (287) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(2(x1))) | (260) |
0#(0(0(0(x1)))) | → | 0#(0(0(2(0(x1))))) | (290) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(1(0(x1)))) | → | 0#(0(x1)) | (202) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(1(0(x1)))) | → | 0#(0(x1)) | (202) |
0#(1(0(x1))) | → | 0#(5(0(x1))) | (159) |
0#(1(0(x1))) | → | 0#(0(2(x1))) | (260) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(2(x1))) | (260) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(1(0(x1)))) | → | 0#(1(0(x1))) | (166) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(4(x1)))) | → | 0#(0(4(x1))) | (207) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(5(0(x1))) | (159) |
0#(1(0(0(x1)))) | → | 0#(0(0(x1))) | (161) |
0#(1(1(0(x1)))) | → | 0#(1(0(5(3(1(x1)))))) | (212) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(5(0(x1))) | (159) |
[0#(x1)] | = | x1 + 0 |
[1(x1)] | = | x1 + 0 |
[4(x1)] | = | x1 + 0 |
[5(x1)] | = | x1 + 0 |
[3(x1)] | = | x1 + 0 |
[0(x1)] | = | x1 + 1 |
[2(x1)] | = | 0 |
There are 158 ruless (increase limit for explicit display).
(w.r.t. the implicit argument filter of the reduction pair), the pair0#(0(0(0(x1)))) | → | 0#(0(0(2(0(x1))))) | (290) |
The dependency pairs are split into 1 component.
0#(1(0(x1))) | → | 0#(5(0(x1))) | (159) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(1(0(x1)))) | → | 0#(0(x1)) | (202) |
0#(5(1(0(x1)))) | → | 0#(0(x1)) | (287) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(0(x1)))) | → | 0#(0(0(x1))) | (161) |
0#(1(1(0(x1)))) | → | 0#(0(1(x1))) | (206) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(5(1(0(x1)))) | → | 0#(0(x1)) | (287) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(4(4(x1))))) | → | 0#(0(x1)) | (276) |
0#(5(1(0(x1)))) | → | 0#(0(x1)) | (287) |
0#(5(1(0(x1)))) | → | 0#(0(x1)) | (287) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(2(x1))) | (260) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(1(0(x1)))) | → | 0#(0(x1)) | (202) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(1(0(x1)))) | → | 0#(0(x1)) | (202) |
0#(1(0(x1))) | → | 0#(5(0(x1))) | (159) |
0#(1(0(x1))) | → | 0#(0(2(x1))) | (260) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(2(x1))) | (260) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(1(0(x1)))) | → | 0#(1(0(x1))) | (166) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(4(x1)))) | → | 0#(0(4(x1))) | (207) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(5(0(x1))) | (159) |
0#(1(0(0(x1)))) | → | 0#(0(0(x1))) | (161) |
0#(1(1(0(x1)))) | → | 0#(1(0(5(3(1(x1)))))) | (212) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(5(0(x1))) | (159) |
[0#(x1)] | = |
|
||||||||||||
[1(x1)] | = |
|
||||||||||||
[4(x1)] | = |
|
||||||||||||
[5(x1)] | = |
|
||||||||||||
[3(x1)] | = |
|
||||||||||||
[0(x1)] | = |
|
||||||||||||
[2(x1)] | = |
|
There are 158 ruless (increase limit for explicit display).
(w.r.t. the implicit argument filter of the reduction pair), the pairs0#(1(0(x1))) | → | 0#(5(0(x1))) | (159) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(1(0(x1)))) | → | 0#(0(x1)) | (202) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(0(x1)))) | → | 0#(0(0(x1))) | (161) |
0#(1(1(0(x1)))) | → | 0#(0(1(x1))) | (206) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(4(4(x1))))) | → | 0#(0(x1)) | (276) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(2(x1))) | (260) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(1(0(x1)))) | → | 0#(0(x1)) | (202) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(1(0(x1)))) | → | 0#(0(x1)) | (202) |
0#(1(0(x1))) | → | 0#(5(0(x1))) | (159) |
0#(1(0(x1))) | → | 0#(0(2(x1))) | (260) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(2(x1))) | (260) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(1(0(x1)))) | → | 0#(1(0(x1))) | (166) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(4(x1)))) | → | 0#(0(4(x1))) | (207) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(5(0(x1))) | (159) |
0#(1(0(0(x1)))) | → | 0#(0(0(x1))) | (161) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(0(x1)) | (167) |
0#(1(0(x1))) | → | 0#(5(0(x1))) | (159) |
The dependency pairs are split into 1 component.
0#(5(1(0(x1)))) | → | 0#(0(x1)) | (287) |
0#(5(1(0(x1)))) | → | 0#(0(x1)) | (287) |
0#(5(1(0(x1)))) | → | 0#(0(x1)) | (287) |
0#(5(1(0(x1)))) | → | 0#(0(x1)) | (287) |
[0#(x1)] | = |
|
||||||||||||
[1(x1)] | = |
|
||||||||||||
[4(x1)] | = |
|
||||||||||||
[5(x1)] | = |
|
||||||||||||
[3(x1)] | = |
|
||||||||||||
[0(x1)] | = |
|
||||||||||||
[2(x1)] | = |
|
There are 158 ruless (increase limit for explicit display).
(w.r.t. the implicit argument filter of the reduction pair), the pairs0#(5(1(0(x1)))) | → | 0#(0(x1)) | (287) |
0#(5(1(0(x1)))) | → | 0#(0(x1)) | (287) |
0#(5(1(0(x1)))) | → | 0#(0(x1)) | (287) |
0#(5(1(0(x1)))) | → | 0#(0(x1)) | (287) |
The dependency pairs are split into 0 components.