The rewrite relation of the following TRS is considered.
a(x1) | → | b(b(x1)) | (1) |
a(b(b(x1))) | → | b(b(c(c(c(a(x1)))))) | (2) |
b(b(x1)) | → | c(c(c(x1))) | (3) |
c(c(c(b(b(x1))))) | → | a(x1) | (4) |
a#(b(b(x1))) | → | b#(c(c(c(a(x1))))) | (5) |
a#(b(b(x1))) | → | a#(x1) | (6) |
b#(b(x1)) | → | c#(x1) | (7) |
a#(x1) | → | b#(x1) | (8) |
c#(c(c(b(b(x1))))) | → | a#(x1) | (9) |
b#(b(x1)) | → | c#(c(c(x1))) | (10) |
a#(x1) | → | b#(b(x1)) | (11) |
a#(b(b(x1))) | → | c#(a(x1)) | (12) |
a#(b(b(x1))) | → | c#(c(c(a(x1)))) | (13) |
a#(b(b(x1))) | → | b#(b(c(c(c(a(x1)))))) | (14) |
b#(b(x1)) | → | c#(c(x1)) | (15) |
a#(b(b(x1))) | → | c#(c(a(x1))) | (16) |
The dependency pairs are split into 1 component.
a#(b(b(x1))) | → | c#(c(a(x1))) | (16) |
c#(c(c(b(b(x1))))) | → | a#(x1) | (9) |
b#(b(x1)) | → | c#(c(x1)) | (15) |
a#(b(b(x1))) | → | b#(b(c(c(c(a(x1)))))) | (14) |
a#(b(b(x1))) | → | c#(c(c(a(x1)))) | (13) |
a#(x1) | → | b#(x1) | (8) |
b#(b(x1)) | → | c#(x1) | (7) |
a#(b(b(x1))) | → | a#(x1) | (6) |
a#(b(b(x1))) | → | c#(a(x1)) | (12) |
a#(x1) | → | b#(b(x1)) | (11) |
b#(b(x1)) | → | c#(c(c(x1))) | (10) |
a#(b(b(x1))) | → | b#(c(c(c(a(x1))))) | (5) |
[a(x1)] | = | x1 + 8 |
[b(x1)] | = | x1 + 4 |
[c(x1)] | = | x1 + 0 |
[c#(x1)] | = | x1 + 0 |
[a#(x1)] | = | x1 + 6 |
[b#(x1)] | = | x1 + 0 |
c(c(c(b(b(x1))))) | → | a(x1) | (4) |
a(x1) | → | b(b(x1)) | (1) |
b(b(x1)) | → | c(c(c(x1))) | (3) |
a(b(b(x1))) | → | b(b(c(c(c(a(x1)))))) | (2) |
a#(b(b(x1))) | → | c#(c(a(x1))) | (16) |
c#(c(c(b(b(x1))))) | → | a#(x1) | (9) |
b#(b(x1)) | → | c#(c(x1)) | (15) |
a#(b(b(x1))) | → | b#(b(c(c(c(a(x1)))))) | (14) |
a#(b(b(x1))) | → | c#(c(c(a(x1)))) | (13) |
a#(x1) | → | b#(x1) | (8) |
b#(b(x1)) | → | c#(x1) | (7) |
a#(b(b(x1))) | → | a#(x1) | (6) |
a#(b(b(x1))) | → | c#(a(x1)) | (12) |
a#(x1) | → | b#(b(x1)) | (11) |
b#(b(x1)) | → | c#(c(c(x1))) | (10) |
a#(b(b(x1))) | → | b#(c(c(c(a(x1))))) | (5) |
The dependency pairs are split into 0 components.