The rewrite relation of the following TRS is considered.
| a(b(c(x1))) | → | c(b(a(x1))) | (1) |
| C(B(A(x1))) | → | A(B(C(x1))) | (2) |
| b(a(C(x1))) | → | C(a(b(x1))) | (3) |
| c(A(B(x1))) | → | B(A(c(x1))) | (4) |
| A(c(b(x1))) | → | b(c(A(x1))) | (5) |
| B(C(a(x1))) | → | a(C(B(x1))) | (6) |
| a(A(x1)) | → | x1 | (7) |
| A(a(x1)) | → | x1 | (8) |
| b(B(x1)) | → | x1 | (9) |
| B(b(x1)) | → | x1 | (10) |
| c(C(x1)) | → | x1 | (11) |
| C(c(x1)) | → | x1 | (12) |
| C#(B(A(x1))) | → | B#(C(x1)) | (13) |
| B#(C(a(x1))) | → | B#(x1) | (14) |
| a#(b(c(x1))) | → | c#(b(a(x1))) | (15) |
| A#(c(b(x1))) | → | A#(x1) | (16) |
| b#(a(C(x1))) | → | a#(b(x1)) | (17) |
| b#(a(C(x1))) | → | b#(x1) | (18) |
| a#(b(c(x1))) | → | b#(a(x1)) | (19) |
| A#(c(b(x1))) | → | b#(c(A(x1))) | (20) |
| b#(a(C(x1))) | → | C#(a(b(x1))) | (21) |
| B#(C(a(x1))) | → | C#(B(x1)) | (22) |
| c#(A(B(x1))) | → | A#(c(x1)) | (23) |
| c#(A(B(x1))) | → | B#(A(c(x1))) | (24) |
| C#(B(A(x1))) | → | C#(x1) | (25) |
| C#(B(A(x1))) | → | A#(B(C(x1))) | (26) |
| A#(c(b(x1))) | → | c#(A(x1)) | (27) |
| a#(b(c(x1))) | → | a#(x1) | (28) |
| B#(C(a(x1))) | → | a#(C(B(x1))) | (29) |
| c#(A(B(x1))) | → | c#(x1) | (30) |
The dependency pairs are split into 1 component.
| c#(A(B(x1))) | → | c#(x1) | (30) |
| B#(C(a(x1))) | → | a#(C(B(x1))) | (29) |
| a#(b(c(x1))) | → | b#(a(x1)) | (19) |
| a#(b(c(x1))) | → | a#(x1) | (28) |
| b#(a(C(x1))) | → | b#(x1) | (18) |
| A#(c(b(x1))) | → | c#(A(x1)) | (27) |
| C#(B(A(x1))) | → | A#(B(C(x1))) | (26) |
| C#(B(A(x1))) | → | C#(x1) | (25) |
| c#(A(B(x1))) | → | B#(A(c(x1))) | (24) |
| b#(a(C(x1))) | → | a#(b(x1)) | (17) |
| A#(c(b(x1))) | → | A#(x1) | (16) |
| a#(b(c(x1))) | → | c#(b(a(x1))) | (15) |
| c#(A(B(x1))) | → | A#(c(x1)) | (23) |
| B#(C(a(x1))) | → | B#(x1) | (14) |
| B#(C(a(x1))) | → | C#(B(x1)) | (22) |
| b#(a(C(x1))) | → | C#(a(b(x1))) | (21) |
| A#(c(b(x1))) | → | b#(c(A(x1))) | (20) |
| C#(B(A(x1))) | → | B#(C(x1)) | (13) |
| [a(x1)] | = | x1 + 1 |
| [b(x1)] | = | x1 + 21239 |
| [B#(x1)] | = | x1 + 8855 |
| [c(x1)] | = | x1 + 1 |
| [C(x1)] | = | x1 + 10803 |
| [B(x1)] | = | x1 + 8856 |
| [C#(x1)] | = | x1 + 10802 |
| [A(x1)] | = | x1 + 44083 |
| [A#(x1)] | = | x1 + 44082 |
| [c#(x1)] | = | x1 + 0 |
| [a#(x1)] | = | x1 + 0 |
| [b#(x1)] | = | x1 + 21238 |
| c(A(B(x1))) | → | B(A(c(x1))) | (4) |
| A(a(x1)) | → | x1 | (8) |
| a(b(c(x1))) | → | c(b(a(x1))) | (1) |
| b(a(C(x1))) | → | C(a(b(x1))) | (3) |
| A(c(b(x1))) | → | b(c(A(x1))) | (5) |
| B(b(x1)) | → | x1 | (10) |
| a(A(x1)) | → | x1 | (7) |
| C(c(x1)) | → | x1 | (12) |
| c(C(x1)) | → | x1 | (11) |
| b(B(x1)) | → | x1 | (9) |
| B(C(a(x1))) | → | a(C(B(x1))) | (6) |
| C(B(A(x1))) | → | A(B(C(x1))) | (2) |
| c#(A(B(x1))) | → | c#(x1) | (30) |
| a#(b(c(x1))) | → | b#(a(x1)) | (19) |
| a#(b(c(x1))) | → | a#(x1) | (28) |
| b#(a(C(x1))) | → | b#(x1) | (18) |
| A#(c(b(x1))) | → | c#(A(x1)) | (27) |
| C#(B(A(x1))) | → | C#(x1) | (25) |
| b#(a(C(x1))) | → | a#(b(x1)) | (17) |
| A#(c(b(x1))) | → | A#(x1) | (16) |
| c#(A(B(x1))) | → | A#(c(x1)) | (23) |
| B#(C(a(x1))) | → | B#(x1) | (14) |
| B#(C(a(x1))) | → | C#(B(x1)) | (22) |
| C#(B(A(x1))) | → | B#(C(x1)) | (13) |
The dependency pairs are split into 2 components.
| c#(A(B(x1))) | → | B#(A(c(x1))) | (24) |
| a#(b(c(x1))) | → | c#(b(a(x1))) | (15) |
| B#(C(a(x1))) | → | a#(C(B(x1))) | (29) |
| π(a) | = | 1 |
| π(b) | = | 1 |
| π(C) | = | 1 |
| π(A) | = | 1 |
| π(A#) | = | 1 |
| π(a#) | = | 1 |
| prec(B#) | = | 3 | status(B#) | = | [1] | list-extension(B#) | = | Lex | ||
| prec(c) | = | 5 | status(c) | = | [1] | list-extension(c) | = | Lex | ||
| prec(B) | = | 2 | status(B) | = | [1] | list-extension(B) | = | Lex | ||
| prec(C#) | = | 0 | status(C#) | = | [] | list-extension(C#) | = | Lex | ||
| prec(c#) | = | 5 | status(c#) | = | [1] | list-extension(c#) | = | Lex | ||
| prec(b#) | = | 0 | status(b#) | = | [] | list-extension(b#) | = | Lex |
| [B#(x1)] | = | x1 + 0 |
| [c(x1)] | = | x1 + 0 |
| [B(x1)] | = | x1 + 0 |
| [C#(x1)] | = | 0 |
| [c#(x1)] | = | x1 + 0 |
| [b#(x1)] | = | 0 |
| c(A(B(x1))) | → | B(A(c(x1))) | (4) |
| A(a(x1)) | → | x1 | (8) |
| a(b(c(x1))) | → | c(b(a(x1))) | (1) |
| b(a(C(x1))) | → | C(a(b(x1))) | (3) |
| A(c(b(x1))) | → | b(c(A(x1))) | (5) |
| B(b(x1)) | → | x1 | (10) |
| a(A(x1)) | → | x1 | (7) |
| C(c(x1)) | → | x1 | (12) |
| c(C(x1)) | → | x1 | (11) |
| b(B(x1)) | → | x1 | (9) |
| B(C(a(x1))) | → | a(C(B(x1))) | (6) |
| C(B(A(x1))) | → | A(B(C(x1))) | (2) |
| c#(A(B(x1))) | → | B#(A(c(x1))) | (24) |
| B#(C(a(x1))) | → | a#(C(B(x1))) | (29) |
The dependency pairs are split into 0 components.
| b#(a(C(x1))) | → | C#(a(b(x1))) | (21) |
| A#(c(b(x1))) | → | b#(c(A(x1))) | (20) |
| C#(B(A(x1))) | → | A#(B(C(x1))) | (26) |
| π(a) | = | 1 |
| π(c) | = | 1 |
| π(C) | = | 1 |
| π(a#) | = | 1 |
| prec(b) | = | 4 | status(b) | = | [1] | list-extension(b) | = | Lex | ||
| prec(B#) | = | 3 | status(B#) | = | [1] | list-extension(B#) | = | Lex | ||
| prec(B) | = | 6 | status(B) | = | [1] | list-extension(B) | = | Lex | ||
| prec(C#) | = | 4 | status(C#) | = | [1] | list-extension(C#) | = | Lex | ||
| prec(A) | = | 6 | status(A) | = | [1] | list-extension(A) | = | Lex | ||
| prec(A#) | = | 6 | status(A#) | = | [1] | list-extension(A#) | = | Lex | ||
| prec(c#) | = | 5 | status(c#) | = | [1] | list-extension(c#) | = | Lex | ||
| prec(b#) | = | 5 | status(b#) | = | [1] | list-extension(b#) | = | Lex |
| [b(x1)] | = | x1 + 0 |
| [B#(x1)] | = | x1 + 0 |
| [B(x1)] | = | x1 + 0 |
| [C#(x1)] | = | x1 + 0 |
| [A(x1)] | = | x1 + 0 |
| [A#(x1)] | = | x1 + 0 |
| [c#(x1)] | = | x1 + 0 |
| [b#(x1)] | = | x1 + 0 |
| c(A(B(x1))) | → | B(A(c(x1))) | (4) |
| A(a(x1)) | → | x1 | (8) |
| a(b(c(x1))) | → | c(b(a(x1))) | (1) |
| b(a(C(x1))) | → | C(a(b(x1))) | (3) |
| A(c(b(x1))) | → | b(c(A(x1))) | (5) |
| B(b(x1)) | → | x1 | (10) |
| a(A(x1)) | → | x1 | (7) |
| C(c(x1)) | → | x1 | (12) |
| c(C(x1)) | → | x1 | (11) |
| b(B(x1)) | → | x1 | (9) |
| B(C(a(x1))) | → | a(C(B(x1))) | (6) |
| C(B(A(x1))) | → | A(B(C(x1))) | (2) |
| b#(a(C(x1))) | → | C#(a(b(x1))) | (21) |
| A#(c(b(x1))) | → | b#(c(A(x1))) | (20) |
| C#(B(A(x1))) | → | A#(B(C(x1))) | (26) |
The dependency pairs are split into 0 components.