The rewrite relation of the following TRS is considered.
| a(a(x1)) | → | b(b(b(x1))) | (1) |
| a(x1) | → | d(c(d(x1))) | (2) |
| b(b(b(x1))) | → | a(f(x1)) | (3) |
| b(b(x1)) | → | c(c(c(x1))) | (4) |
| c(c(x1)) | → | d(d(d(x1))) | (5) |
| c(d(d(x1))) | → | f(x1) | (6) |
| f(f(x1)) | → | f(a(x1)) | (7) |
| c#(d(d(x1))) | → | f#(x1) | (8) |
| b#(b(b(x1))) | → | f#(x1) | (9) |
| a#(a(x1)) | → | b#(x1) | (10) |
| b#(b(x1)) | → | c#(c(x1)) | (11) |
| b#(b(x1)) | → | c#(x1) | (12) |
| a#(a(x1)) | → | b#(b(b(x1))) | (13) |
| b#(b(x1)) | → | c#(c(c(x1))) | (14) |
| b#(b(b(x1))) | → | a#(f(x1)) | (15) |
| f#(f(x1)) | → | f#(a(x1)) | (16) |
| a#(x1) | → | c#(d(x1)) | (17) |
| a#(a(x1)) | → | b#(b(x1)) | (18) |
| f#(f(x1)) | → | a#(x1) | (19) |
The dependency pairs are split into 1 component.
| f#(f(x1)) | → | a#(x1) | (19) |
| b#(b(x1)) | → | c#(x1) | (12) |
| a#(a(x1)) | → | b#(b(x1)) | (18) |
| a#(x1) | → | c#(d(x1)) | (17) |
| f#(f(x1)) | → | f#(a(x1)) | (16) |
| b#(b(x1)) | → | c#(c(x1)) | (11) |
| a#(a(x1)) | → | b#(x1) | (10) |
| b#(b(b(x1))) | → | f#(x1) | (9) |
| b#(b(b(x1))) | → | a#(f(x1)) | (15) |
| b#(b(x1)) | → | c#(c(c(x1))) | (14) |
| a#(a(x1)) | → | b#(b(b(x1))) | (13) |
| c#(d(d(x1))) | → | f#(x1) | (8) |
| [a(x1)] | = | x1 + 678006 |
| [d(x1)] | = | x1 + 193716 |
| [b(x1)] | = | x1 + 452004 |
| [c(x1)] | = | x1 + 290574 |
| [f(x1)] | = | x1 + 678006 |
| [f#(x1)] | = | x1 + 387431 |
| [c#(x1)] | = | x1 + 0 |
| [a#(x1)] | = | x1 + 355147 |
| [b#(x1)] | = | x1 + 129145 |
| b(b(x1)) | → | c(c(c(x1))) | (4) |
| a(a(x1)) | → | b(b(b(x1))) | (1) |
| b(b(b(x1))) | → | a(f(x1)) | (3) |
| c(c(x1)) | → | d(d(d(x1))) | (5) |
| f(f(x1)) | → | f(a(x1)) | (7) |
| c(d(d(x1))) | → | f(x1) | (6) |
| a(x1) | → | d(c(d(x1))) | (2) |
| f#(f(x1)) | → | a#(x1) | (19) |
| b#(b(x1)) | → | c#(x1) | (12) |
| a#(a(x1)) | → | b#(b(x1)) | (18) |
| a#(x1) | → | c#(d(x1)) | (17) |
| b#(b(x1)) | → | c#(c(x1)) | (11) |
| a#(a(x1)) | → | b#(x1) | (10) |
| b#(b(b(x1))) | → | f#(x1) | (9) |
| b#(b(x1)) | → | c#(c(c(x1))) | (14) |
| c#(d(d(x1))) | → | f#(x1) | (8) |
The dependency pairs are split into 2 components.
| a#(a(x1)) | → | b#(b(b(x1))) | (13) |
| b#(b(b(x1))) | → | a#(f(x1)) | (15) |
| [a(x1)] | = | x1 + 14 |
| [d(x1)] | = | x1 + 4 |
| [b(x1)] | = | x1 + 9 |
| [c(x1)] | = | x1 + 6 |
| [f(x1)] | = | 1 |
| [f#(x1)] | = | x1 + 387431 |
| [c#(x1)] | = | x1 + 0 |
| [a#(x1)] | = | x1 + 16 |
| [b#(x1)] | = | x1 + 0 |
| b(b(x1)) | → | c(c(c(x1))) | (4) |
| a(a(x1)) | → | b(b(b(x1))) | (1) |
| b(b(b(x1))) | → | a(f(x1)) | (3) |
| c(c(x1)) | → | d(d(d(x1))) | (5) |
| f(f(x1)) | → | f(a(x1)) | (7) |
| c(d(d(x1))) | → | f(x1) | (6) |
| a(x1) | → | d(c(d(x1))) | (2) |
| a#(a(x1)) | → | b#(b(b(x1))) | (13) |
| b#(b(b(x1))) | → | a#(f(x1)) | (15) |
The dependency pairs are split into 0 components.
| f#(f(x1)) | → | f#(a(x1)) | (16) |
| prec(a) | = | 0 | status(a) | = | [] | list-extension(a) | = | Lex | ||
| prec(d) | = | 0 | status(d) | = | [] | list-extension(d) | = | Lex | ||
| prec(b) | = | 0 | status(b) | = | [] | list-extension(b) | = | Lex | ||
| prec(c) | = | 1 | status(c) | = | [] | list-extension(c) | = | Lex | ||
| prec(f) | = | 1 | status(f) | = | [] | list-extension(f) | = | Lex | ||
| prec(f#) | = | 0 | status(f#) | = | [1] | list-extension(f#) | = | Lex | ||
| prec(c#) | = | 0 | status(c#) | = | [] | list-extension(c#) | = | Lex | ||
| prec(a#) | = | 0 | status(a#) | = | [] | list-extension(a#) | = | Lex | ||
| prec(b#) | = | 0 | status(b#) | = | [] | list-extension(b#) | = | Lex |
| [a(x1)] | = | x1 + 159429 |
| [d(x1)] | = | x1 + 44286 |
| [b(x1)] | = | x1 + 106286 |
| [c(x1)] | = | x1 + 70857 |
| [f(x1)] | = | x1 + 159429 |
| [f#(x1)] | = | x1 + 1 |
| [c#(x1)] | = | 1 |
| [a#(x1)] | = | 1 |
| [b#(x1)] | = | 1 |
| b(b(x1)) | → | c(c(c(x1))) | (4) |
| a(a(x1)) | → | b(b(b(x1))) | (1) |
| b(b(b(x1))) | → | a(f(x1)) | (3) |
| c(c(x1)) | → | d(d(d(x1))) | (5) |
| f(f(x1)) | → | f(a(x1)) | (7) |
| c(d(d(x1))) | → | f(x1) | (6) |
| a(x1) | → | d(c(d(x1))) | (2) |
| f#(f(x1)) | → | f#(a(x1)) | (16) |
The dependency pairs are split into 0 components.