Certification Problem

Input (TPDB SRS_Standard/ICFP_2010/157593)

The rewrite relation of the following TRS is considered.

0(0(0(1(x1)))) 0(1(0(0(2(3(x1)))))) (1)
0(0(4(1(x1)))) 4(2(0(1(0(x1))))) (2)
0(0(4(1(x1)))) 0(2(1(4(2(0(x1)))))) (3)
0(0(4(1(x1)))) 1(0(5(4(2(0(x1)))))) (4)
0(0(4(1(x1)))) 3(4(2(0(1(0(x1)))))) (5)
0(3(4(0(x1)))) 0(3(0(2(4(2(x1)))))) (6)
0(3(4(0(x1)))) 0(3(4(2(0(2(x1)))))) (7)
0(3(4(0(x1)))) 0(4(5(3(0(5(x1)))))) (8)
0(4(4(0(x1)))) 4(4(2(0(0(x1))))) (9)
0(4(4(0(x1)))) 0(4(0(2(4(2(x1)))))) (10)
0(4(4(0(x1)))) 4(2(0(0(2(4(x1)))))) (11)
0(4(4(0(x1)))) 4(2(0(0(4(2(x1)))))) (12)
0(4(4(0(x1)))) 4(2(0(4(2(0(x1)))))) (13)
0(4(4(1(x1)))) 0(1(4(4(2(x1))))) (14)
0(4(4(1(x1)))) 1(4(4(2(0(x1))))) (15)
0(4(4(1(x1)))) 0(1(4(4(2(3(x1)))))) (16)
0(4(4(1(x1)))) 0(1(5(4(4(2(x1)))))) (17)
0(4(4(1(x1)))) 1(5(4(4(2(0(x1)))))) (18)
0(4(4(1(x1)))) 2(4(0(1(5(4(x1)))))) (19)
0(4(4(1(x1)))) 2(4(4(1(2(0(x1)))))) (20)
0(4(4(1(x1)))) 2(4(5(4(0(1(x1)))))) (21)
0(4(4(1(x1)))) 4(2(4(2(1(0(x1)))))) (22)
1(4(4(0(x1)))) 5(4(4(2(0(1(x1)))))) (23)
1(4(4(1(x1)))) 2(1(4(1(2(4(x1)))))) (24)
1(4(4(1(x1)))) 2(3(4(1(4(1(x1)))))) (25)
1(4(4(1(x1)))) 2(4(1(2(1(4(x1)))))) (26)
1(4(4(1(x1)))) 2(4(2(1(4(1(x1)))))) (27)
4(0(0(0(x1)))) 0(4(2(0(0(5(x1)))))) (28)
4(0(0(1(x1)))) 2(3(0(1(0(4(x1)))))) (29)
4(0(4(0(x1)))) 2(4(2(0(0(4(x1)))))) (30)
4(0(4(0(x1)))) 3(4(2(0(4(0(x1)))))) (31)
4(0(4(1(x1)))) 2(4(2(0(4(1(x1)))))) (32)
4(3(4(0(x1)))) 4(0(3(4(2(x1))))) (33)
4(3(4(0(x1)))) 4(4(2(0(3(x1))))) (34)
4(3(4(0(x1)))) 0(4(2(3(4(2(x1)))))) (35)
4(3(4(0(x1)))) 2(3(0(4(4(5(x1)))))) (36)
4(3(4(0(x1)))) 2(3(4(4(0(2(x1)))))) (37)
4(3(4(0(x1)))) 2(4(0(3(4(2(x1)))))) (38)
4(3(4(0(x1)))) 4(2(0(4(2(3(x1)))))) (39)
4(3(4(0(x1)))) 4(3(0(5(4(2(x1)))))) (40)
4(3(4(0(x1)))) 4(4(2(3(0(2(x1)))))) (41)
4(3(4(0(x1)))) 4(4(5(3(0(3(x1)))))) (42)
4(3(4(1(x1)))) 3(4(2(4(1(x1))))) (43)
4(3(4(1(x1)))) 1(4(2(4(2(3(x1)))))) (44)
4(3(4(1(x1)))) 2(3(1(4(5(4(x1)))))) (45)
4(3(4(1(x1)))) 2(3(4(2(1(4(x1)))))) (46)
4(3(4(1(x1)))) 2(4(2(3(1(4(x1)))))) (47)
4(3(4(1(x1)))) 3(1(4(2(4(2(x1)))))) (48)
4(3(4(1(x1)))) 3(4(2(4(5(1(x1)))))) (49)
4(3(4(1(x1)))) 3(4(5(3(4(1(x1)))))) (50)
4(4(4(0(x1)))) 2(4(2(4(4(0(x1)))))) (51)
4(4(4(1(x1)))) 2(4(2(4(1(4(x1)))))) (52)
4(4(4(1(x1)))) 4(2(4(1(2(4(x1)))))) (53)
4(4(4(1(x1)))) 4(5(4(1(5(4(x1)))))) (54)
0(0(4(0(0(x1))))) 0(4(2(0(0(0(x1)))))) (55)
0(1(3(5(0(x1))))) 0(1(3(0(5(3(x1)))))) (56)
0(3(4(0(0(x1))))) 3(4(2(0(0(0(x1)))))) (57)
0(3(5(0(1(x1))))) 0(1(0(5(2(3(x1)))))) (58)
0(3(5(4(1(x1))))) 5(1(0(4(5(3(x1)))))) (59)
0(4(3(4(0(x1))))) 0(2(3(4(4(0(x1)))))) (60)
1(4(4(0(0(x1))))) 4(1(4(2(0(0(x1)))))) (61)
1(4(4(0(1(x1))))) 1(4(4(1(2(0(x1)))))) (62)
1(4(4(4(1(x1))))) 2(4(1(4(4(1(x1)))))) (63)
4(0(0(4(1(x1))))) 4(4(2(0(1(0(x1)))))) (64)
4(0(4(4(0(x1))))) 4(0(4(2(4(0(x1)))))) (65)
4(1(0(0(1(x1))))) 4(2(0(1(1(0(x1)))))) (66)
4(1(3(4(0(x1))))) 3(1(4(2(4(0(x1)))))) (67)
4(3(1(0(0(x1))))) 1(4(2(3(0(0(x1)))))) (68)
4(3(1(0(0(x1))))) 3(1(4(2(0(0(x1)))))) (69)
4(3(1(5(0(x1))))) 1(4(5(3(0(1(x1)))))) (70)
4(3(2(4(0(x1))))) 4(2(0(3(4(2(x1)))))) (71)
4(3(4(4(1(x1))))) 4(4(3(1(4(2(x1)))))) (72)
4(3(5(0(0(x1))))) 4(0(5(2(3(0(x1)))))) (73)
4(3(5(0(1(x1))))) 2(3(5(4(0(1(x1)))))) (74)
4(3(5(4(0(x1))))) 0(3(4(5(4(5(x1)))))) (75)
4(3(5(4(0(x1))))) 0(4(5(3(4(2(x1)))))) (76)
4(3(5(4(0(x1))))) 4(4(5(3(0(2(x1)))))) (77)
4(3(5(4(0(x1))))) 5(4(3(4(2(0(x1)))))) (78)
4(3(5(4(1(x1))))) 3(4(2(4(5(1(x1)))))) (79)
4(3(5(5(0(x1))))) 0(2(3(5(4(5(x1)))))) (80)
4(3(5(5(1(x1))))) 1(5(4(2(5(3(x1)))))) (81)
4(4(0(0(1(x1))))) 4(0(4(2(0(1(x1)))))) (82)
4(4(4(4(1(x1))))) 4(4(4(1(2(4(x1)))))) (83)
4(4(5(0(1(x1))))) 4(5(0(1(4(2(x1)))))) (84)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by matchbox @ termCOMP 2023)

1 String Reversal

Since only unary symbols occur, one can reverse all terms and obtains the TRS
1(0(0(0(x1)))) 3(2(0(0(1(0(x1)))))) (85)
1(4(0(0(x1)))) 0(1(0(2(4(x1))))) (86)
1(4(0(0(x1)))) 0(2(4(1(2(0(x1)))))) (87)
1(4(0(0(x1)))) 0(2(4(5(0(1(x1)))))) (88)
1(4(0(0(x1)))) 0(1(0(2(4(3(x1)))))) (89)
0(4(3(0(x1)))) 2(4(2(0(3(0(x1)))))) (90)
0(4(3(0(x1)))) 2(0(2(4(3(0(x1)))))) (91)
0(4(3(0(x1)))) 5(0(3(5(4(0(x1)))))) (92)
0(4(4(0(x1)))) 0(0(2(4(4(x1))))) (93)
0(4(4(0(x1)))) 2(4(2(0(4(0(x1)))))) (94)
0(4(4(0(x1)))) 4(2(0(0(2(4(x1)))))) (11)
0(4(4(0(x1)))) 2(4(0(0(2(4(x1)))))) (95)
0(4(4(0(x1)))) 0(2(4(0(2(4(x1)))))) (96)
1(4(4(0(x1)))) 2(4(4(1(0(x1))))) (97)
1(4(4(0(x1)))) 0(2(4(4(1(x1))))) (98)
1(4(4(0(x1)))) 3(2(4(4(1(0(x1)))))) (99)
1(4(4(0(x1)))) 2(4(4(5(1(0(x1)))))) (100)
1(4(4(0(x1)))) 0(2(4(4(5(1(x1)))))) (101)
1(4(4(0(x1)))) 4(5(1(0(4(2(x1)))))) (102)
1(4(4(0(x1)))) 0(2(1(4(4(2(x1)))))) (103)
1(4(4(0(x1)))) 1(0(4(5(4(2(x1)))))) (104)
1(4(4(0(x1)))) 0(1(2(4(2(4(x1)))))) (105)
0(4(4(1(x1)))) 1(0(2(4(4(5(x1)))))) (106)
1(4(4(1(x1)))) 4(2(1(4(1(2(x1)))))) (107)
1(4(4(1(x1)))) 1(4(1(4(3(2(x1)))))) (108)
1(4(4(1(x1)))) 4(1(2(1(4(2(x1)))))) (109)
1(4(4(1(x1)))) 1(4(1(2(4(2(x1)))))) (110)
0(0(0(4(x1)))) 5(0(0(2(4(0(x1)))))) (111)
1(0(0(4(x1)))) 4(0(1(0(3(2(x1)))))) (112)
0(4(0(4(x1)))) 4(0(0(2(4(2(x1)))))) (113)
0(4(0(4(x1)))) 0(4(0(2(4(3(x1)))))) (114)
1(4(0(4(x1)))) 1(4(0(2(4(2(x1)))))) (115)
0(4(3(4(x1)))) 2(4(3(0(4(x1))))) (116)
0(4(3(4(x1)))) 3(0(2(4(4(x1))))) (117)
0(4(3(4(x1)))) 2(4(3(2(4(0(x1)))))) (118)
0(4(3(4(x1)))) 5(4(4(0(3(2(x1)))))) (119)
0(4(3(4(x1)))) 2(0(4(4(3(2(x1)))))) (120)
0(4(3(4(x1)))) 2(4(3(0(4(2(x1)))))) (121)
0(4(3(4(x1)))) 3(2(4(0(2(4(x1)))))) (122)
0(4(3(4(x1)))) 2(4(5(0(3(4(x1)))))) (123)
0(4(3(4(x1)))) 2(0(3(2(4(4(x1)))))) (124)
0(4(3(4(x1)))) 3(0(3(5(4(4(x1)))))) (125)
1(4(3(4(x1)))) 1(4(2(4(3(x1))))) (126)
1(4(3(4(x1)))) 3(2(4(2(4(1(x1)))))) (127)
1(4(3(4(x1)))) 4(5(4(1(3(2(x1)))))) (128)
1(4(3(4(x1)))) 4(1(2(4(3(2(x1)))))) (129)
1(4(3(4(x1)))) 4(1(3(2(4(2(x1)))))) (130)
1(4(3(4(x1)))) 2(4(2(4(1(3(x1)))))) (131)
1(4(3(4(x1)))) 1(5(4(2(4(3(x1)))))) (132)
1(4(3(4(x1)))) 1(4(3(5(4(3(x1)))))) (133)
0(4(4(4(x1)))) 0(4(4(2(4(2(x1)))))) (134)
1(4(4(4(x1)))) 4(1(4(2(4(2(x1)))))) (135)
1(4(4(4(x1)))) 4(2(1(4(2(4(x1)))))) (136)
1(4(4(4(x1)))) 4(5(1(4(5(4(x1)))))) (137)
0(0(4(0(0(x1))))) 0(0(0(2(4(0(x1)))))) (138)
0(5(3(1(0(x1))))) 3(5(0(3(1(0(x1)))))) (139)
0(0(4(3(0(x1))))) 0(0(0(2(4(3(x1)))))) (140)
1(0(5(3(0(x1))))) 3(2(5(0(1(0(x1)))))) (141)
1(4(5(3(0(x1))))) 3(5(4(0(1(5(x1)))))) (142)
0(4(3(4(0(x1))))) 0(4(4(3(2(0(x1)))))) (143)
0(0(4(4(1(x1))))) 0(0(2(4(1(4(x1)))))) (144)
1(0(4(4(1(x1))))) 0(2(1(4(4(1(x1)))))) (145)
1(4(4(4(1(x1))))) 1(4(4(1(4(2(x1)))))) (146)
1(4(0(0(4(x1))))) 0(1(0(2(4(4(x1)))))) (147)
0(4(4(0(4(x1))))) 0(4(2(4(0(4(x1)))))) (148)
1(0(0(1(4(x1))))) 0(1(1(0(2(4(x1)))))) (149)
0(4(3(1(4(x1))))) 0(4(2(4(1(3(x1)))))) (150)
0(0(1(3(4(x1))))) 0(0(3(2(4(1(x1)))))) (151)
0(0(1(3(4(x1))))) 0(0(2(4(1(3(x1)))))) (152)
0(5(1(3(4(x1))))) 1(0(3(5(4(1(x1)))))) (153)
0(4(2(3(4(x1))))) 2(4(3(0(2(4(x1)))))) (154)
1(4(4(3(4(x1))))) 2(4(1(3(4(4(x1)))))) (155)
0(0(5(3(4(x1))))) 0(3(2(5(0(4(x1)))))) (156)
1(0(5(3(4(x1))))) 1(0(4(5(3(2(x1)))))) (157)
0(4(5(3(4(x1))))) 5(4(5(4(3(0(x1)))))) (158)
0(4(5(3(4(x1))))) 2(4(3(5(4(0(x1)))))) (159)
0(4(5(3(4(x1))))) 2(0(3(5(4(4(x1)))))) (160)
0(4(5(3(4(x1))))) 0(2(4(3(4(5(x1)))))) (161)
1(4(5(3(4(x1))))) 1(5(4(2(4(3(x1)))))) (162)
0(5(5(3(4(x1))))) 5(4(5(3(2(0(x1)))))) (163)
1(5(5(3(4(x1))))) 3(5(2(4(5(1(x1)))))) (164)
1(0(0(4(4(x1))))) 1(0(2(4(0(4(x1)))))) (165)
1(4(4(4(4(x1))))) 4(2(1(4(4(4(x1)))))) (166)
1(0(5(4(4(x1))))) 2(4(1(0(5(4(x1)))))) (167)

1.1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.

There are 135 ruless (increase limit for explicit display).

1.1.1 Monotonic Reduction Pair Processor with Usable Rules

Using the matrix interpretations of dimension 1 with strict dimension 1 over the rationals with delta = 1
[5(x1)] = x1 +
0
[4(x1)] = x1 +
1
[3(x1)] = x1 +
0
[2(x1)] = x1 +
0
[1(x1)] = x1 +
0
[0(x1)] = x1 +
1
[1#(x1)] = x1 +
0
[0#(x1)] = x1 +
1
together with the usable rules
1(0(0(0(x1)))) 3(2(0(0(1(0(x1)))))) (85)
1(4(0(0(x1)))) 0(1(0(2(4(x1))))) (86)
1(4(0(0(x1)))) 0(2(4(1(2(0(x1)))))) (87)
1(4(0(0(x1)))) 0(2(4(5(0(1(x1)))))) (88)
1(4(0(0(x1)))) 0(1(0(2(4(3(x1)))))) (89)
0(4(3(0(x1)))) 2(4(2(0(3(0(x1)))))) (90)
0(4(3(0(x1)))) 2(0(2(4(3(0(x1)))))) (91)
0(4(3(0(x1)))) 5(0(3(5(4(0(x1)))))) (92)
0(4(4(0(x1)))) 0(0(2(4(4(x1))))) (93)
0(4(4(0(x1)))) 2(4(2(0(4(0(x1)))))) (94)
0(4(4(0(x1)))) 4(2(0(0(2(4(x1)))))) (11)
0(4(4(0(x1)))) 2(4(0(0(2(4(x1)))))) (95)
0(4(4(0(x1)))) 0(2(4(0(2(4(x1)))))) (96)
1(4(4(0(x1)))) 2(4(4(1(0(x1))))) (97)
1(4(4(0(x1)))) 0(2(4(4(1(x1))))) (98)
1(4(4(0(x1)))) 3(2(4(4(1(0(x1)))))) (99)
1(4(4(0(x1)))) 2(4(4(5(1(0(x1)))))) (100)
1(4(4(0(x1)))) 0(2(4(4(5(1(x1)))))) (101)
1(4(4(0(x1)))) 4(5(1(0(4(2(x1)))))) (102)
1(4(4(0(x1)))) 0(2(1(4(4(2(x1)))))) (103)
1(4(4(0(x1)))) 1(0(4(5(4(2(x1)))))) (104)
1(4(4(0(x1)))) 0(1(2(4(2(4(x1)))))) (105)
0(4(4(1(x1)))) 1(0(2(4(4(5(x1)))))) (106)
1(4(4(1(x1)))) 4(2(1(4(1(2(x1)))))) (107)
1(4(4(1(x1)))) 1(4(1(4(3(2(x1)))))) (108)
1(4(4(1(x1)))) 4(1(2(1(4(2(x1)))))) (109)
1(4(4(1(x1)))) 1(4(1(2(4(2(x1)))))) (110)
0(0(0(4(x1)))) 5(0(0(2(4(0(x1)))))) (111)
1(0(0(4(x1)))) 4(0(1(0(3(2(x1)))))) (112)
0(4(0(4(x1)))) 4(0(0(2(4(2(x1)))))) (113)
0(4(0(4(x1)))) 0(4(0(2(4(3(x1)))))) (114)
1(4(0(4(x1)))) 1(4(0(2(4(2(x1)))))) (115)
0(4(3(4(x1)))) 2(4(3(0(4(x1))))) (116)
0(4(3(4(x1)))) 3(0(2(4(4(x1))))) (117)
0(4(3(4(x1)))) 2(4(3(2(4(0(x1)))))) (118)
0(4(3(4(x1)))) 5(4(4(0(3(2(x1)))))) (119)
0(4(3(4(x1)))) 2(0(4(4(3(2(x1)))))) (120)
0(4(3(4(x1)))) 2(4(3(0(4(2(x1)))))) (121)
0(4(3(4(x1)))) 3(2(4(0(2(4(x1)))))) (122)
0(4(3(4(x1)))) 2(4(5(0(3(4(x1)))))) (123)
0(4(3(4(x1)))) 2(0(3(2(4(4(x1)))))) (124)
0(4(3(4(x1)))) 3(0(3(5(4(4(x1)))))) (125)
1(4(3(4(x1)))) 1(4(2(4(3(x1))))) (126)
1(4(3(4(x1)))) 3(2(4(2(4(1(x1)))))) (127)
1(4(3(4(x1)))) 4(5(4(1(3(2(x1)))))) (128)
1(4(3(4(x1)))) 4(1(2(4(3(2(x1)))))) (129)
1(4(3(4(x1)))) 4(1(3(2(4(2(x1)))))) (130)
1(4(3(4(x1)))) 2(4(2(4(1(3(x1)))))) (131)
1(4(3(4(x1)))) 1(5(4(2(4(3(x1)))))) (132)
1(4(3(4(x1)))) 1(4(3(5(4(3(x1)))))) (133)
0(4(4(4(x1)))) 0(4(4(2(4(2(x1)))))) (134)
1(4(4(4(x1)))) 4(1(4(2(4(2(x1)))))) (135)
1(4(4(4(x1)))) 4(2(1(4(2(4(x1)))))) (136)
1(4(4(4(x1)))) 4(5(1(4(5(4(x1)))))) (137)
0(0(4(0(0(x1))))) 0(0(0(2(4(0(x1)))))) (138)
0(5(3(1(0(x1))))) 3(5(0(3(1(0(x1)))))) (139)
0(0(4(3(0(x1))))) 0(0(0(2(4(3(x1)))))) (140)
1(0(5(3(0(x1))))) 3(2(5(0(1(0(x1)))))) (141)
1(4(5(3(0(x1))))) 3(5(4(0(1(5(x1)))))) (142)
0(4(3(4(0(x1))))) 0(4(4(3(2(0(x1)))))) (143)
0(0(4(4(1(x1))))) 0(0(2(4(1(4(x1)))))) (144)
1(0(4(4(1(x1))))) 0(2(1(4(4(1(x1)))))) (145)
1(4(4(4(1(x1))))) 1(4(4(1(4(2(x1)))))) (146)
1(4(0(0(4(x1))))) 0(1(0(2(4(4(x1)))))) (147)
0(4(4(0(4(x1))))) 0(4(2(4(0(4(x1)))))) (148)
1(0(0(1(4(x1))))) 0(1(1(0(2(4(x1)))))) (149)
0(4(3(1(4(x1))))) 0(4(2(4(1(3(x1)))))) (150)
0(0(1(3(4(x1))))) 0(0(3(2(4(1(x1)))))) (151)
0(0(1(3(4(x1))))) 0(0(2(4(1(3(x1)))))) (152)
0(5(1(3(4(x1))))) 1(0(3(5(4(1(x1)))))) (153)
0(4(2(3(4(x1))))) 2(4(3(0(2(4(x1)))))) (154)
1(4(4(3(4(x1))))) 2(4(1(3(4(4(x1)))))) (155)
0(0(5(3(4(x1))))) 0(3(2(5(0(4(x1)))))) (156)
1(0(5(3(4(x1))))) 1(0(4(5(3(2(x1)))))) (157)
0(4(5(3(4(x1))))) 5(4(5(4(3(0(x1)))))) (158)
0(4(5(3(4(x1))))) 2(4(3(5(4(0(x1)))))) (159)
0(4(5(3(4(x1))))) 2(0(3(5(4(4(x1)))))) (160)
0(4(5(3(4(x1))))) 0(2(4(3(4(5(x1)))))) (161)
1(4(5(3(4(x1))))) 1(5(4(2(4(3(x1)))))) (162)
0(5(5(3(4(x1))))) 5(4(5(3(2(0(x1)))))) (163)
1(5(5(3(4(x1))))) 3(5(2(4(5(1(x1)))))) (164)
1(0(0(4(4(x1))))) 1(0(2(4(0(4(x1)))))) (165)
1(4(4(4(4(x1))))) 4(2(1(4(4(4(x1)))))) (166)
1(0(5(4(4(x1))))) 2(4(1(0(5(4(x1)))))) (167)
(w.r.t. the implicit argument filter of the reduction pair), the pairs
1#(5(5(3(4(x1))))) 1#(x1) (168)
1#(4(5(3(0(x1))))) 1#(5(x1)) (170)
1#(4(5(3(0(x1))))) 0#(1(5(x1))) (171)
1#(4(4(4(x1)))) 1#(4(5(4(x1)))) (172)
1#(4(4(4(x1)))) 1#(4(2(4(x1)))) (173)
1#(4(4(4(x1)))) 1#(4(2(4(2(x1))))) (174)
1#(4(4(4(4(x1))))) 1#(4(4(4(x1)))) (175)
1#(4(4(4(1(x1))))) 1#(4(2(x1))) (177)
1#(4(4(3(4(x1))))) 1#(3(4(4(x1)))) (178)
1#(4(4(1(x1)))) 1#(4(3(2(x1)))) (179)
1#(4(4(1(x1)))) 1#(4(2(x1))) (180)
1#(4(4(1(x1)))) 1#(4(1(2(x1)))) (182)
1#(4(4(1(x1)))) 1#(2(x1)) (184)
1#(4(4(1(x1)))) 1#(2(4(2(x1)))) (185)
1#(4(4(1(x1)))) 1#(2(1(4(2(x1))))) (186)
1#(4(4(0(x1)))) 1#(x1) (187)
1#(4(4(0(x1)))) 1#(4(4(2(x1)))) (188)
1#(4(4(0(x1)))) 1#(2(4(2(4(x1))))) (189)
1#(4(4(0(x1)))) 1#(0(x1)) (190)
1#(4(4(0(x1)))) 1#(0(4(2(x1)))) (192)
1#(4(4(0(x1)))) 0#(4(2(x1))) (194)
1#(4(3(4(x1)))) 1#(x1) (199)
1#(4(3(4(x1)))) 1#(3(x1)) (203)
1#(4(3(4(x1)))) 1#(3(2(x1))) (204)
1#(4(3(4(x1)))) 1#(3(2(4(2(x1))))) (205)
1#(4(3(4(x1)))) 1#(2(4(3(2(x1))))) (206)
1#(4(0(4(x1)))) 0#(2(4(2(x1)))) (208)
1#(4(0(0(x1)))) 1#(x1) (209)
1#(4(0(0(x1)))) 1#(2(0(x1))) (210)
1#(4(0(0(x1)))) 1#(0(2(4(x1)))) (211)
1#(4(0(0(x1)))) 1#(0(2(4(3(x1))))) (212)
1#(4(0(0(x1)))) 0#(2(4(x1))) (213)
1#(4(0(0(x1)))) 0#(2(4(3(x1)))) (215)
1#(4(0(0(x1)))) 0#(1(x1)) (217)
1#(4(0(0(4(x1))))) 1#(0(2(4(4(x1))))) (220)
1#(4(0(0(4(x1))))) 0#(2(4(4(x1)))) (221)
1#(0(5(4(4(x1))))) 1#(0(5(4(x1)))) (223)
1#(0(5(4(4(x1))))) 0#(5(4(x1))) (224)
1#(0(5(3(0(x1))))) 1#(0(x1)) (227)
1#(0(4(4(1(x1))))) 1#(4(4(1(x1)))) (229)
1#(0(0(4(x1)))) 1#(0(3(2(x1)))) (231)
1#(0(0(4(x1)))) 0#(3(2(x1))) (232)
1#(0(0(4(x1)))) 0#(1(0(3(2(x1))))) (233)
1#(0(0(4(4(x1))))) 0#(4(x1)) (235)
1#(0(0(1(4(x1))))) 1#(1(0(2(4(x1))))) (237)
1#(0(0(1(4(x1))))) 1#(0(2(4(x1)))) (238)
1#(0(0(1(4(x1))))) 0#(2(4(x1))) (239)
1#(0(0(0(x1)))) 1#(0(x1)) (241)
1#(0(0(0(x1)))) 0#(1(0(x1))) (242)
0#(5(5(3(4(x1))))) 0#(x1) (244)
0#(5(1(3(4(x1))))) 1#(x1) (246)
0#(4(5(3(4(x1))))) 0#(x1) (249)
0#(4(4(0(x1)))) 0#(4(0(x1))) (255)
0#(4(4(0(x1)))) 0#(2(4(x1))) (256)
0#(4(4(0(x1)))) 0#(2(4(4(x1)))) (257)
0#(4(4(0(x1)))) 0#(0(2(4(x1)))) (259)
0#(4(3(4(x1)))) 0#(x1) (262)
0#(4(3(4(x1)))) 0#(4(x1)) (263)
0#(4(3(4(x1)))) 0#(4(2(x1))) (265)
0#(4(3(4(x1)))) 0#(3(4(x1))) (267)
0#(4(3(4(x1)))) 0#(3(2(x1))) (268)
0#(4(3(4(x1)))) 0#(2(4(x1))) (270)
0#(4(3(1(4(x1))))) 1#(3(x1)) (273)
0#(4(3(0(x1)))) 0#(3(0(x1))) (276)
0#(4(2(3(4(x1))))) 0#(2(4(x1))) (278)
0#(4(0(4(x1)))) 0#(2(4(3(x1)))) (280)
0#(4(0(4(x1)))) 0#(2(4(2(x1)))) (281)
0#(4(0(4(x1)))) 0#(0(2(4(2(x1))))) (282)
0#(0(5(3(4(x1))))) 0#(4(x1)) (283)
0#(0(4(4(1(x1))))) 1#(4(x1)) (285)
0#(0(4(4(1(x1))))) 0#(2(4(1(4(x1))))) (286)
0#(0(4(3(0(x1))))) 0#(2(4(3(x1)))) (288)
0#(0(4(3(0(x1))))) 0#(0(2(4(3(x1))))) (289)
0#(0(4(0(0(x1))))) 0#(2(4(0(x1)))) (291)
0#(0(4(0(0(x1))))) 0#(0(2(4(0(x1))))) (292)
0#(0(1(3(4(x1))))) 1#(x1) (294)
0#(0(1(3(4(x1))))) 1#(3(x1)) (295)
0#(0(1(3(4(x1))))) 0#(3(2(4(1(x1))))) (296)
0#(0(1(3(4(x1))))) 0#(2(4(1(3(x1))))) (297)
0#(0(0(4(x1)))) 0#(x1) (300)
0#(0(0(4(x1)))) 0#(2(4(0(x1)))) (301)
and no rules could be deleted.

1.1.1.1 Dependency Graph Processor

The dependency pairs are split into 0 components.