Certification Problem

Input (TPDB SRS_Standard/ICFP_2010/211857)

The rewrite relation of the following TRS is considered.

0(0(1(x1))) 0(1(2(0(x1)))) (1)
0(0(1(x1))) 0(3(1(0(x1)))) (2)
0(0(1(x1))) 1(0(4(0(x1)))) (3)
0(0(1(x1))) 0(1(3(0(2(x1))))) (4)
0(0(1(x1))) 0(1(3(0(4(x1))))) (5)
0(0(1(x1))) 0(2(0(1(2(x1))))) (6)
0(0(1(x1))) 0(3(0(1(2(x1))))) (7)
0(0(1(x1))) 0(3(0(3(1(x1))))) (8)
0(0(1(x1))) 0(4(0(4(1(x1))))) (9)
0(0(1(x1))) 1(2(0(2(0(x1))))) (10)
0(0(1(x1))) 1(2(2(0(0(x1))))) (11)
0(0(1(x1))) 0(0(2(2(1(2(x1)))))) (12)
0(0(1(x1))) 0(1(2(4(2(0(x1)))))) (13)
0(0(1(x1))) 1(2(0(3(0(4(x1)))))) (14)
0(1(1(x1))) 0(2(1(1(x1)))) (15)
0(1(1(x1))) 0(3(1(1(x1)))) (16)
0(1(1(x1))) 1(1(3(0(4(x1))))) (17)
0(1(1(x1))) 1(2(0(2(1(x1))))) (18)
0(1(1(x1))) 1(0(3(1(2(4(x1)))))) (19)
0(1(1(x1))) 1(0(4(2(1(2(x1)))))) (20)
0(1(1(x1))) 1(1(2(4(3(0(x1)))))) (21)
0(1(1(x1))) 1(2(1(0(4(4(x1)))))) (22)
0(1(1(x1))) 1(2(2(1(3(0(x1)))))) (23)
0(5(1(x1))) 0(3(1(5(x1)))) (24)
0(5(1(x1))) 0(4(5(1(x1)))) (25)
0(5(1(x1))) 0(2(3(1(5(x1))))) (26)
0(5(1(x1))) 0(3(1(5(2(x1))))) (27)
0(5(1(x1))) 0(3(1(2(5(2(x1)))))) (28)
5(0(1(x1))) 5(1(2(4(0(x1))))) (29)
5(0(1(x1))) 5(0(2(1(2(4(x1)))))) (30)
5(0(1(x1))) 5(1(2(3(0(4(x1)))))) (31)
0(0(1(5(x1)))) 0(4(1(0(5(x1))))) (32)
0(0(2(1(x1)))) 2(0(3(0(2(1(x1)))))) (33)
0(0(2(1(x1)))) 2(3(0(2(0(1(x1)))))) (34)
0(1(0(1(x1)))) 1(0(2(0(1(x1))))) (35)
0(1(1(1(x1)))) 1(1(3(1(0(x1))))) (36)
5(0(1(1(x1)))) 1(5(1(2(0(x1))))) (37)
5(3(0(1(x1)))) 5(1(2(3(0(x1))))) (38)
5(3(1(5(x1)))) 5(3(1(2(5(x1))))) (39)
5(3(2(1(x1)))) 1(2(3(5(2(x1))))) (40)
5(4(0(1(x1)))) 1(2(5(0(4(x1))))) (41)
0(0(5(1(5(x1))))) 1(2(5(5(0(0(x1)))))) (42)
0(5(3(0(1(x1))))) 1(0(5(3(0(4(x1)))))) (43)
0(5(3(4(1(x1))))) 1(0(3(5(4(5(x1)))))) (44)
0(5(4(0(1(x1))))) 0(1(3(0(4(5(x1)))))) (45)
5(4(2(1(1(x1))))) 5(4(1(2(1(2(x1)))))) (46)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by matchbox @ termCOMP 2023)

1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
5#(4(2(1(1(x1))))) 5#(4(1(2(1(2(x1)))))) (47)
5#(4(0(1(x1)))) 5#(0(4(x1))) (48)
5#(4(0(1(x1)))) 0#(4(x1)) (49)
5#(3(2(1(x1)))) 5#(2(x1)) (50)
5#(3(1(5(x1)))) 5#(3(1(2(5(x1))))) (51)
5#(3(0(1(x1)))) 5#(1(2(3(0(x1))))) (52)
5#(3(0(1(x1)))) 0#(x1) (53)
5#(0(1(x1))) 5#(1(2(4(0(x1))))) (54)
5#(0(1(x1))) 5#(1(2(3(0(4(x1)))))) (55)
5#(0(1(x1))) 5#(0(2(1(2(4(x1)))))) (56)
5#(0(1(x1))) 0#(x1) (57)
5#(0(1(x1))) 0#(4(x1)) (58)
5#(0(1(x1))) 0#(2(1(2(4(x1))))) (59)
5#(0(1(1(x1)))) 5#(1(2(0(x1)))) (60)
5#(0(1(1(x1)))) 0#(x1) (61)
0#(5(4(0(1(x1))))) 5#(x1) (62)
0#(5(4(0(1(x1))))) 0#(4(5(x1))) (63)
0#(5(4(0(1(x1))))) 0#(1(3(0(4(5(x1)))))) (64)
0#(5(3(4(1(x1))))) 5#(x1) (65)
0#(5(3(4(1(x1))))) 5#(4(5(x1))) (66)
0#(5(3(4(1(x1))))) 0#(3(5(4(5(x1))))) (67)
0#(5(3(0(1(x1))))) 5#(3(0(4(x1)))) (68)
0#(5(3(0(1(x1))))) 0#(5(3(0(4(x1))))) (69)
0#(5(3(0(1(x1))))) 0#(4(x1)) (70)
0#(5(1(x1))) 5#(x1) (71)
0#(5(1(x1))) 5#(2(x1)) (72)
0#(5(1(x1))) 0#(4(5(1(x1)))) (73)
0#(5(1(x1))) 0#(3(1(5(x1)))) (74)
0#(5(1(x1))) 0#(3(1(5(2(x1))))) (75)
0#(5(1(x1))) 0#(3(1(2(5(2(x1)))))) (76)
0#(5(1(x1))) 0#(2(3(1(5(x1))))) (77)
0#(1(1(x1))) 0#(x1) (78)
0#(1(1(x1))) 0#(4(x1)) (79)
0#(1(1(x1))) 0#(4(4(x1))) (80)
0#(1(1(x1))) 0#(4(2(1(2(x1))))) (81)
0#(1(1(x1))) 0#(3(1(2(4(x1))))) (82)
0#(1(1(x1))) 0#(3(1(1(x1)))) (83)
0#(1(1(x1))) 0#(2(1(x1))) (84)
0#(1(1(x1))) 0#(2(1(1(x1)))) (85)
0#(1(1(1(x1)))) 0#(x1) (86)
0#(1(0(1(x1)))) 0#(2(0(1(x1)))) (87)
0#(0(5(1(5(x1))))) 5#(5(0(0(x1)))) (88)
0#(0(5(1(5(x1))))) 5#(0(0(x1))) (89)
0#(0(5(1(5(x1))))) 0#(x1) (90)
0#(0(5(1(5(x1))))) 0#(0(x1)) (91)
0#(0(2(1(x1)))) 0#(3(0(2(1(x1))))) (92)
0#(0(2(1(x1)))) 0#(2(0(1(x1)))) (93)
0#(0(2(1(x1)))) 0#(1(x1)) (94)
0#(0(1(x1))) 0#(x1) (95)
0#(0(1(x1))) 0#(4(x1)) (96)
0#(0(1(x1))) 0#(4(1(x1))) (97)
0#(0(1(x1))) 0#(4(0(x1))) (98)
0#(0(1(x1))) 0#(4(0(4(1(x1))))) (99)
0#(0(1(x1))) 0#(3(1(x1))) (100)
0#(0(1(x1))) 0#(3(1(0(x1)))) (101)
0#(0(1(x1))) 0#(3(0(4(x1)))) (102)
0#(0(1(x1))) 0#(3(0(3(1(x1))))) (103)
0#(0(1(x1))) 0#(3(0(1(2(x1))))) (104)
0#(0(1(x1))) 0#(2(x1)) (105)
0#(0(1(x1))) 0#(2(2(1(2(x1))))) (106)
0#(0(1(x1))) 0#(2(0(x1))) (107)
0#(0(1(x1))) 0#(2(0(1(2(x1))))) (108)
0#(0(1(x1))) 0#(1(3(0(4(x1))))) (109)
0#(0(1(x1))) 0#(1(3(0(2(x1))))) (110)
0#(0(1(x1))) 0#(1(2(x1))) (111)
0#(0(1(x1))) 0#(1(2(4(2(0(x1)))))) (112)
0#(0(1(x1))) 0#(1(2(0(x1)))) (113)
0#(0(1(x1))) 0#(0(x1)) (114)
0#(0(1(x1))) 0#(0(2(2(1(2(x1)))))) (115)
0#(0(1(5(x1)))) 0#(5(x1)) (116)
0#(0(1(5(x1)))) 0#(4(1(0(5(x1))))) (117)

1.1 Monotonic Reduction Pair Processor with Usable Rules

Using the matrix interpretations of dimension 1 with strict dimension 1 over the rationals with delta = 1
[5(x1)] = x1 +
0
[4(x1)] = x1 +
0
[3(x1)] = x1 +
0
[2(x1)] = x1 +
0
[1(x1)] = x1 +
3
[0(x1)] = x1 +
1
[5#(x1)] = x1 +
1
[0#(x1)] = x1 +
0
together with the usable rules
0(0(1(x1))) 0(1(2(0(x1)))) (1)
0(0(1(x1))) 0(3(1(0(x1)))) (2)
0(0(1(x1))) 1(0(4(0(x1)))) (3)
0(0(1(x1))) 0(1(3(0(2(x1))))) (4)
0(0(1(x1))) 0(1(3(0(4(x1))))) (5)
0(0(1(x1))) 0(2(0(1(2(x1))))) (6)
0(0(1(x1))) 0(3(0(1(2(x1))))) (7)
0(0(1(x1))) 0(3(0(3(1(x1))))) (8)
0(0(1(x1))) 0(4(0(4(1(x1))))) (9)
0(0(1(x1))) 1(2(0(2(0(x1))))) (10)
0(0(1(x1))) 1(2(2(0(0(x1))))) (11)
0(0(1(x1))) 0(0(2(2(1(2(x1)))))) (12)
0(0(1(x1))) 0(1(2(4(2(0(x1)))))) (13)
0(0(1(x1))) 1(2(0(3(0(4(x1)))))) (14)
0(1(1(x1))) 0(2(1(1(x1)))) (15)
0(1(1(x1))) 0(3(1(1(x1)))) (16)
0(1(1(x1))) 1(1(3(0(4(x1))))) (17)
0(1(1(x1))) 1(2(0(2(1(x1))))) (18)
0(1(1(x1))) 1(0(3(1(2(4(x1)))))) (19)
0(1(1(x1))) 1(0(4(2(1(2(x1)))))) (20)
0(1(1(x1))) 1(1(2(4(3(0(x1)))))) (21)
0(1(1(x1))) 1(2(1(0(4(4(x1)))))) (22)
0(1(1(x1))) 1(2(2(1(3(0(x1)))))) (23)
0(5(1(x1))) 0(3(1(5(x1)))) (24)
0(5(1(x1))) 0(4(5(1(x1)))) (25)
0(5(1(x1))) 0(2(3(1(5(x1))))) (26)
0(5(1(x1))) 0(3(1(5(2(x1))))) (27)
0(5(1(x1))) 0(3(1(2(5(2(x1)))))) (28)
5(0(1(x1))) 5(1(2(4(0(x1))))) (29)
5(0(1(x1))) 5(0(2(1(2(4(x1)))))) (30)
5(0(1(x1))) 5(1(2(3(0(4(x1)))))) (31)
0(0(1(5(x1)))) 0(4(1(0(5(x1))))) (32)
0(0(2(1(x1)))) 2(0(3(0(2(1(x1)))))) (33)
0(0(2(1(x1)))) 2(3(0(2(0(1(x1)))))) (34)
0(1(0(1(x1)))) 1(0(2(0(1(x1))))) (35)
0(1(1(1(x1)))) 1(1(3(1(0(x1))))) (36)
5(0(1(1(x1)))) 1(5(1(2(0(x1))))) (37)
5(3(0(1(x1)))) 5(1(2(3(0(x1))))) (38)
5(3(1(5(x1)))) 5(3(1(2(5(x1))))) (39)
5(3(2(1(x1)))) 1(2(3(5(2(x1))))) (40)
5(4(0(1(x1)))) 1(2(5(0(4(x1))))) (41)
0(0(5(1(5(x1))))) 1(2(5(5(0(0(x1)))))) (42)
0(5(3(0(1(x1))))) 1(0(5(3(0(4(x1)))))) (43)
0(5(3(4(1(x1))))) 1(0(3(5(4(5(x1)))))) (44)
0(5(4(0(1(x1))))) 0(1(3(0(4(5(x1)))))) (45)
5(4(2(1(1(x1))))) 5(4(1(2(1(2(x1)))))) (46)
(w.r.t. the implicit argument filter of the reduction pair), the pairs
5#(4(0(1(x1)))) 5#(0(4(x1))) (48)
5#(4(0(1(x1)))) 0#(4(x1)) (49)
5#(3(2(1(x1)))) 5#(2(x1)) (50)
5#(3(0(1(x1)))) 0#(x1) (53)
5#(0(1(x1))) 0#(x1) (57)
5#(0(1(x1))) 0#(4(x1)) (58)
5#(0(1(x1))) 0#(2(1(2(4(x1))))) (59)
5#(0(1(1(x1)))) 5#(1(2(0(x1)))) (60)
5#(0(1(1(x1)))) 0#(x1) (61)
0#(5(4(0(1(x1))))) 5#(x1) (62)
0#(5(4(0(1(x1))))) 0#(4(5(x1))) (63)
0#(5(3(4(1(x1))))) 5#(x1) (65)
0#(5(3(4(1(x1))))) 5#(4(5(x1))) (66)
0#(5(3(4(1(x1))))) 0#(3(5(4(5(x1))))) (67)
0#(5(3(0(1(x1))))) 5#(3(0(4(x1)))) (68)
0#(5(3(0(1(x1))))) 0#(5(3(0(4(x1))))) (69)
0#(5(3(0(1(x1))))) 0#(4(x1)) (70)
0#(5(1(x1))) 5#(x1) (71)
0#(5(1(x1))) 5#(2(x1)) (72)
0#(1(1(x1))) 0#(x1) (78)
0#(1(1(x1))) 0#(4(x1)) (79)
0#(1(1(x1))) 0#(4(4(x1))) (80)
0#(1(1(x1))) 0#(4(2(1(2(x1))))) (81)
0#(1(1(x1))) 0#(3(1(2(4(x1))))) (82)
0#(1(1(x1))) 0#(2(1(x1))) (84)
0#(1(1(1(x1)))) 0#(x1) (86)
0#(1(0(1(x1)))) 0#(2(0(1(x1)))) (87)
0#(0(5(1(5(x1))))) 5#(5(0(0(x1)))) (88)
0#(0(5(1(5(x1))))) 5#(0(0(x1))) (89)
0#(0(5(1(5(x1))))) 0#(x1) (90)
0#(0(5(1(5(x1))))) 0#(0(x1)) (91)
0#(0(2(1(x1)))) 0#(1(x1)) (94)
0#(0(1(x1))) 0#(x1) (95)
0#(0(1(x1))) 0#(4(x1)) (96)
0#(0(1(x1))) 0#(4(1(x1))) (97)
0#(0(1(x1))) 0#(4(0(x1))) (98)
0#(0(1(x1))) 0#(3(1(x1))) (100)
0#(0(1(x1))) 0#(3(0(4(x1)))) (102)
0#(0(1(x1))) 0#(2(x1)) (105)
0#(0(1(x1))) 0#(2(2(1(2(x1))))) (106)
0#(0(1(x1))) 0#(2(0(x1))) (107)
0#(0(1(x1))) 0#(1(2(x1))) (111)
0#(0(1(x1))) 0#(0(x1)) (114)
0#(0(1(5(x1)))) 0#(5(x1)) (116)
and no rules could be deleted.

1.1.1 Dependency Graph Processor

The dependency pairs are split into 0 components.