The rewrite relation of the following TRS is considered.
| 0(0(x1)) | → | 0(1(2(0(1(1(x1)))))) | (1) |
| 0(0(x1)) | → | 1(0(1(0(1(1(x1)))))) | (2) |
| 3(0(x1)) | → | 1(0(1(1(1(3(x1)))))) | (3) |
| 0(0(0(x1))) | → | 0(0(1(1(0(x1))))) | (4) |
| 0(0(3(x1))) | → | 0(3(1(0(1(1(x1)))))) | (5) |
| 2(3(0(x1))) | → | 2(1(0(1(1(3(x1)))))) | (6) |
| 3(0(0(x1))) | → | 3(0(1(0(1(1(x1)))))) | (7) |
| 3(0(4(x1))) | → | 3(1(0(1(1(4(x1)))))) | (8) |
| 5(0(3(x1))) | → | 3(0(1(1(5(x1))))) | (9) |
| 5(0(3(x1))) | → | 3(5(0(1(1(x1))))) | (10) |
| 0(0(0(4(x1)))) | → | 2(0(2(0(0(4(x1)))))) | (11) |
| 0(0(1(3(x1)))) | → | 0(3(1(0(1(1(x1)))))) | (12) |
| 0(0(2(4(x1)))) | → | 0(2(2(0(4(x1))))) | (13) |
| 0(2(1(3(x1)))) | → | 0(1(2(3(4(x1))))) | (14) |
| 0(2(1(3(x1)))) | → | 2(0(1(3(4(x1))))) | (15) |
| 0(2(1(4(x1)))) | → | 2(0(1(1(4(x1))))) | (16) |
| 0(2(3(0(x1)))) | → | 2(3(4(0(0(x1))))) | (17) |
| 0(2(3(0(x1)))) | → | 2(0(1(2(3(0(x1)))))) | (18) |
| 0(2(5(4(x1)))) | → | 2(2(4(5(0(x1))))) | (19) |
| 0(2(5(4(x1)))) | → | 4(5(1(2(0(x1))))) | (20) |
| 0(4(1(0(x1)))) | → | 0(0(1(1(4(x1))))) | (21) |
| 0(5(5(4(x1)))) | → | 2(4(5(5(1(0(x1)))))) | (22) |
| 2(3(0(0(x1)))) | → | 0(1(1(2(3(0(x1)))))) | (23) |
| 2(3(0(0(x1)))) | → | 0(1(2(1(3(0(x1)))))) | (24) |
| 3(0(0(3(x1)))) | → | 3(0(3(0(1(1(x1)))))) | (25) |
| 3(0(2(0(x1)))) | → | 0(3(0(1(2(1(x1)))))) | (26) |
| 3(0(4(0(x1)))) | → | 3(0(0(1(1(4(x1)))))) | (27) |
| 3(0(5(0(x1)))) | → | 5(0(3(0(1(1(x1)))))) | (28) |
| 3(1(0(0(x1)))) | → | 1(1(1(3(0(0(x1)))))) | (29) |
| 3(1(0(4(x1)))) | → | 1(1(1(3(4(0(x1)))))) | (30) |
| 3(2(1(4(x1)))) | → | 1(1(2(2(4(3(x1)))))) | (31) |
| 3(2(1(4(x1)))) | → | 1(2(1(3(1(4(x1)))))) | (32) |
| 4(1(0(0(x1)))) | → | 0(0(1(1(4(1(x1)))))) | (33) |
| 4(1(0(4(x1)))) | → | 4(0(1(1(4(x1))))) | (34) |
| 5(1(0(3(x1)))) | → | 5(3(0(1(1(1(x1)))))) | (35) |
| 5(5(0(4(x1)))) | → | 5(5(1(0(4(x1))))) | (36) |
| 5(5(0(4(x1)))) | → | 0(1(1(5(5(4(x1)))))) | (37) |
| 5(5(4(3(x1)))) | → | 3(4(5(5(1(x1))))) | (38) |
| 0(1(4(3(3(x1))))) | → | 0(1(1(4(3(3(x1)))))) | (39) |
| 0(2(1(5(3(x1))))) | → | 0(5(2(1(1(3(x1)))))) | (40) |
| 0(2(5(2(3(x1))))) | → | 0(3(5(2(1(2(x1)))))) | (41) |
| 0(2(5(3(0(x1))))) | → | 0(1(2(5(3(0(x1)))))) | (42) |
| 2(5(1(0(4(x1))))) | → | 5(0(1(1(4(2(x1)))))) | (43) |
| 3(5(1(0(4(x1))))) | → | 3(5(0(1(1(4(x1)))))) | (44) |
| 4(0(1(0(3(x1))))) | → | 4(0(3(0(1(1(x1)))))) | (45) |
| 4(1(4(4(0(x1))))) | → | 4(0(4(1(1(4(x1)))))) | (46) |
| 4(2(3(5(4(x1))))) | → | 2(2(4(4(5(3(x1)))))) | (47) |
| 4(2(5(0(4(x1))))) | → | 4(4(1(0(5(2(x1)))))) | (48) |
| 4(4(5(0(0(x1))))) | → | 4(4(0(1(5(0(x1)))))) | (49) |
{5(☐), 4(☐), 3(☐), 2(☐), 1(☐), 0(☐)}
We obtain the transformed TRSThere are 294 ruless (increase limit for explicit display).
As carrier we take the set {0,...,5}. Symbols are labeled by the interpretation of their arguments using the interpretations (modulo 6):
| [5(x1)] | = | 6x1 + 0 |
| [4(x1)] | = | 6x1 + 1 |
| [3(x1)] | = | 6x1 + 2 |
| [2(x1)] | = | 6x1 + 3 |
| [1(x1)] | = | 6x1 + 4 |
| [0(x1)] | = | 6x1 + 5 |
There are 1764 ruless (increase limit for explicit display).
| [50(x1)] | = |
x1 +
|
||||
| [51(x1)] | = |
x1 +
|
||||
| [52(x1)] | = |
x1 +
|
||||
| [53(x1)] | = |
x1 +
|
||||
| [54(x1)] | = |
x1 +
|
||||
| [55(x1)] | = |
x1 +
|
||||
| [40(x1)] | = |
x1 +
|
||||
| [41(x1)] | = |
x1 +
|
||||
| [42(x1)] | = |
x1 +
|
||||
| [43(x1)] | = |
x1 +
|
||||
| [44(x1)] | = |
x1 +
|
||||
| [45(x1)] | = |
x1 +
|
||||
| [30(x1)] | = |
x1 +
|
||||
| [31(x1)] | = |
x1 +
|
||||
| [32(x1)] | = |
x1 +
|
||||
| [33(x1)] | = |
x1 +
|
||||
| [34(x1)] | = |
x1 +
|
||||
| [35(x1)] | = |
x1 +
|
||||
| [20(x1)] | = |
x1 +
|
||||
| [21(x1)] | = |
x1 +
|
||||
| [22(x1)] | = |
x1 +
|
||||
| [23(x1)] | = |
x1 +
|
||||
| [24(x1)] | = |
x1 +
|
||||
| [25(x1)] | = |
x1 +
|
||||
| [10(x1)] | = |
x1 +
|
||||
| [11(x1)] | = |
x1 +
|
||||
| [12(x1)] | = |
x1 +
|
||||
| [13(x1)] | = |
x1 +
|
||||
| [14(x1)] | = |
x1 +
|
||||
| [15(x1)] | = |
x1 +
|
||||
| [00(x1)] | = |
x1 +
|
||||
| [01(x1)] | = |
x1 +
|
||||
| [02(x1)] | = |
x1 +
|
||||
| [03(x1)] | = |
x1 +
|
||||
| [04(x1)] | = |
x1 +
|
||||
| [05(x1)] | = |
x1 +
|
There are 1688 ruless (increase limit for explicit display).
There are 167 ruless (increase limit for explicit display).
| [51(x1)] | = |
x1 +
|
||||
| [55(x1)] | = |
x1 +
|
||||
| [40(x1)] | = |
x1 +
|
||||
| [41(x1)] | = |
x1 +
|
||||
| [42(x1)] | = |
x1 +
|
||||
| [43(x1)] | = |
x1 +
|
||||
| [44(x1)] | = |
x1 +
|
||||
| [45(x1)] | = |
x1 +
|
||||
| [30(x1)] | = |
x1 +
|
||||
| [31(x1)] | = |
x1 +
|
||||
| [32(x1)] | = |
x1 +
|
||||
| [33(x1)] | = |
x1 +
|
||||
| [34(x1)] | = |
x1 +
|
||||
| [35(x1)] | = |
x1 +
|
||||
| [21(x1)] | = |
x1 +
|
||||
| [23(x1)] | = |
x1 +
|
||||
| [24(x1)] | = |
x1 +
|
||||
| [25(x1)] | = |
x1 +
|
||||
| [11(x1)] | = |
x1 +
|
||||
| [12(x1)] | = |
x1 +
|
||||
| [13(x1)] | = |
x1 +
|
||||
| [14(x1)] | = |
x1 +
|
||||
| [15(x1)] | = |
x1 +
|
||||
| [00(x1)] | = |
x1 +
|
||||
| [01(x1)] | = |
x1 +
|
||||
| [02(x1)] | = |
x1 +
|
||||
| [03(x1)] | = |
x1 +
|
||||
| [04(x1)] | = |
x1 +
|
||||
| [05(x1)] | = |
x1 +
|
||||
| [51#(x1)] | = |
x1 +
|
||||
| [55#(x1)] | = |
x1 +
|
||||
| [41#(x1)] | = |
x1 +
|
||||
| [45#(x1)] | = |
x1 +
|
||||
| [31#(x1)] | = |
x1 +
|
||||
| [35#(x1)] | = |
x1 +
|
||||
| [21#(x1)] | = |
x1 +
|
||||
| [25#(x1)] | = |
x1 +
|
||||
| [11#(x1)] | = |
x1 +
|
||||
| [12#(x1)] | = |
x1 +
|
||||
| [15#(x1)] | = |
x1 +
|
||||
| [01#(x1)] | = |
x1 +
|
||||
| [02#(x1)] | = |
x1 +
|
||||
| [05#(x1)] | = |
x1 +
|
| 12(35(04(x1))) | → | 14(15(04(14(14(12(34(x1))))))) | (423) |
| 05(05(05(01(45(x1))))) | → | 03(25(03(25(05(01(45(x1))))))) | (704) |
| 05(05(05(01(44(x1))))) | → | 03(25(03(25(05(01(44(x1))))))) | (705) |
| 05(05(05(01(43(x1))))) | → | 03(25(03(25(05(01(43(x1))))))) | (706) |
| 05(05(05(01(42(x1))))) | → | 03(25(03(25(05(01(42(x1))))))) | (707) |
| 05(05(05(01(41(x1))))) | → | 03(25(03(25(05(01(41(x1))))))) | (708) |
| 05(05(05(01(40(x1))))) | → | 03(25(03(25(05(01(40(x1))))))) | (709) |
| 25(05(05(01(45(x1))))) | → | 23(25(03(25(05(01(45(x1))))))) | (716) |
| 25(05(05(01(44(x1))))) | → | 23(25(03(25(05(01(44(x1))))))) | (717) |
| 25(05(05(01(43(x1))))) | → | 23(25(03(25(05(01(43(x1))))))) | (718) |
| 25(05(05(01(42(x1))))) | → | 23(25(03(25(05(01(42(x1))))))) | (719) |
| 25(05(05(01(41(x1))))) | → | 23(25(03(25(05(01(41(x1))))))) | (720) |
| 25(05(05(01(40(x1))))) | → | 23(25(03(25(05(01(40(x1))))))) | (721) |
| 02(35(03(25(04(x1))))) | → | 05(02(35(04(13(24(14(x1))))))) | (1245) |
| 02(35(00(55(04(x1))))) | → | 00(55(02(35(04(14(14(x1))))))) | (1317) |
| 12(34(15(05(05(x1))))) | → | 14(14(14(12(35(05(05(x1))))))) | (1358) |
| 12(34(15(05(04(x1))))) | → | 14(14(14(12(35(05(04(x1))))))) | (1359) |
| 12(34(15(05(03(x1))))) | → | 14(14(14(12(35(05(03(x1))))))) | (1360) |
| 12(34(15(05(02(x1))))) | → | 14(14(14(12(35(05(02(x1))))))) | (1361) |
| 12(34(15(05(01(x1))))) | → | 14(14(14(12(35(05(01(x1))))))) | (1362) |
| 12(34(15(05(00(x1))))) | → | 14(14(14(12(35(05(00(x1))))))) | (1363) |
| 11(44(15(05(04(x1))))) | → | 15(05(04(14(11(44(14(x1))))))) | (1503) |
| 05(04(11(42(32(35(x1)))))) | → | 05(04(14(11(42(32(35(x1))))))) | (1712) |
| 05(04(11(42(32(34(x1)))))) | → | 05(04(14(11(42(32(34(x1))))))) | (1713) |
| 05(04(11(42(32(33(x1)))))) | → | 05(04(14(11(42(32(33(x1))))))) | (1714) |
| 05(04(11(42(32(32(x1)))))) | → | 05(04(14(11(42(32(32(x1))))))) | (1715) |
| 05(04(11(42(32(31(x1)))))) | → | 05(04(14(11(42(32(31(x1))))))) | (1716) |
| 05(04(11(42(32(30(x1)))))) | → | 05(04(14(11(42(32(30(x1))))))) | (1717) |
| 15(04(11(42(32(35(x1)))))) | → | 15(04(14(11(42(32(35(x1))))))) | (1718) |
| 15(04(11(42(32(34(x1)))))) | → | 15(04(14(11(42(32(34(x1))))))) | (1719) |
| 15(04(11(42(32(33(x1)))))) | → | 15(04(14(11(42(32(33(x1))))))) | (1720) |
| 15(04(11(42(32(32(x1)))))) | → | 15(04(14(11(42(32(32(x1))))))) | (1721) |
| 15(04(11(42(32(31(x1)))))) | → | 15(04(14(11(42(32(31(x1))))))) | (1722) |
| 15(04(11(42(32(30(x1)))))) | → | 15(04(14(11(42(32(30(x1))))))) | (1723) |
| 25(04(11(42(32(35(x1)))))) | → | 25(04(14(11(42(32(35(x1))))))) | (1724) |
| 25(04(11(42(32(34(x1)))))) | → | 25(04(14(11(42(32(34(x1))))))) | (1725) |
| 25(04(11(42(32(33(x1)))))) | → | 25(04(14(11(42(32(33(x1))))))) | (1726) |
| 25(04(11(42(32(32(x1)))))) | → | 25(04(14(11(42(32(32(x1))))))) | (1727) |
| 25(04(11(42(32(31(x1)))))) | → | 25(04(14(11(42(32(31(x1))))))) | (1728) |
| 25(04(11(42(32(30(x1)))))) | → | 25(04(14(11(42(32(30(x1))))))) | (1729) |
| 35(04(11(42(32(35(x1)))))) | → | 35(04(14(11(42(32(35(x1))))))) | (1730) |
| 35(04(11(42(32(34(x1)))))) | → | 35(04(14(11(42(32(34(x1))))))) | (1731) |
| 35(04(11(42(32(33(x1)))))) | → | 35(04(14(11(42(32(33(x1))))))) | (1732) |
| 35(04(11(42(32(32(x1)))))) | → | 35(04(14(11(42(32(32(x1))))))) | (1733) |
| 35(04(11(42(32(31(x1)))))) | → | 35(04(14(11(42(32(31(x1))))))) | (1734) |
| 35(04(11(42(32(30(x1)))))) | → | 35(04(14(11(42(32(30(x1))))))) | (1735) |
| 45(04(11(42(32(35(x1)))))) | → | 45(04(14(11(42(32(35(x1))))))) | (1736) |
| 45(04(11(42(32(34(x1)))))) | → | 45(04(14(11(42(32(34(x1))))))) | (1737) |
| 45(04(11(42(32(33(x1)))))) | → | 45(04(14(11(42(32(33(x1))))))) | (1738) |
| 45(04(11(42(32(32(x1)))))) | → | 45(04(14(11(42(32(32(x1))))))) | (1739) |
| 45(04(11(42(32(31(x1)))))) | → | 45(04(14(11(42(32(31(x1))))))) | (1740) |
| 45(04(11(42(32(30(x1)))))) | → | 45(04(14(11(42(32(30(x1))))))) | (1741) |
| 55(04(11(42(32(35(x1)))))) | → | 55(04(14(11(42(32(35(x1))))))) | (1742) |
| 55(04(11(42(32(34(x1)))))) | → | 55(04(14(11(42(32(34(x1))))))) | (1743) |
| 55(04(11(42(32(33(x1)))))) | → | 55(04(14(11(42(32(33(x1))))))) | (1744) |
| 55(04(11(42(32(32(x1)))))) | → | 55(04(14(11(42(32(32(x1))))))) | (1745) |
| 55(04(11(42(32(31(x1)))))) | → | 55(04(14(11(42(32(31(x1))))))) | (1746) |
| 55(04(11(42(32(30(x1)))))) | → | 55(04(14(11(42(32(30(x1))))))) | (1747) |
| 01(45(04(15(02(35(x1)))))) | → | 01(45(02(35(04(14(15(x1))))))) | (1928) |
| 01(45(04(15(02(34(x1)))))) | → | 01(45(02(35(04(14(14(x1))))))) | (1929) |
| 11(45(04(15(02(35(x1)))))) | → | 11(45(02(35(04(14(15(x1))))))) | (1934) |
| 11(45(04(15(02(34(x1)))))) | → | 11(45(02(35(04(14(14(x1))))))) | (1935) |
| 21(45(04(15(02(35(x1)))))) | → | 21(45(02(35(04(14(15(x1))))))) | (1940) |
| 21(45(04(15(02(34(x1)))))) | → | 21(45(02(35(04(14(14(x1))))))) | (1941) |
| 31(45(04(15(02(35(x1)))))) | → | 31(45(02(35(04(14(15(x1))))))) | (1946) |
| 31(45(04(15(02(34(x1)))))) | → | 31(45(02(35(04(14(14(x1))))))) | (1947) |
| 41(45(04(15(02(35(x1)))))) | → | 41(45(02(35(04(14(15(x1))))))) | (1952) |
| 41(45(04(15(02(34(x1)))))) | → | 41(45(02(35(04(14(14(x1))))))) | (1953) |
| 51(45(04(15(02(35(x1)))))) | → | 51(45(02(35(04(14(15(x1))))))) | (1958) |
| 51(45(04(15(02(34(x1)))))) | → | 51(45(02(35(04(14(14(x1))))))) | (1959) |
| 01(44(11(41(45(01(x1)))))) | → | 01(45(01(44(14(11(41(x1))))))) | (1968) |
| 11(44(11(41(45(01(x1)))))) | → | 11(45(01(44(14(11(41(x1))))))) | (1974) |
| 21(44(11(41(45(01(x1)))))) | → | 21(45(01(44(14(11(41(x1))))))) | (1980) |
| 31(44(11(41(45(01(x1)))))) | → | 31(45(01(44(14(11(41(x1))))))) | (1986) |
| 41(44(11(41(45(01(x1)))))) | → | 41(45(01(44(14(11(41(x1))))))) | (1992) |
| 51(44(11(41(45(01(x1)))))) | → | 51(45(01(44(14(11(41(x1))))))) | (1998) |
There are 101 ruless (increase limit for explicit display).
and no rules could be deleted.The dependency pairs are split into 1 component.
| 12#(34(15(05(05(x1))))) | → | 12#(35(05(05(x1)))) | (2228) |
| 12#(34(15(05(01(x1))))) | → | 12#(35(05(01(x1)))) | (2220) |
| 12#(34(15(05(02(x1))))) | → | 12#(35(05(02(x1)))) | (2222) |
| 12#(34(15(05(04(x1))))) | → | 12#(35(05(04(x1)))) | (2226) |
| [55(x1)] | = |
x1 +
|
||||
| [40(x1)] | = |
x1 +
|
||||
| [41(x1)] | = |
x1 +
|
||||
| [42(x1)] | = |
x1 +
|
||||
| [43(x1)] | = |
x1 +
|
||||
| [44(x1)] | = |
x1 +
|
||||
| [45(x1)] | = |
x1 +
|
||||
| [30(x1)] | = |
x1 +
|
||||
| [31(x1)] | = |
x1 +
|
||||
| [32(x1)] | = |
x1 +
|
||||
| [33(x1)] | = |
x1 +
|
||||
| [34(x1)] | = |
x1 +
|
||||
| [35(x1)] | = |
x1 +
|
||||
| [23(x1)] | = |
x1 +
|
||||
| [24(x1)] | = |
x1 +
|
||||
| [25(x1)] | = |
x1 +
|
||||
| [11(x1)] | = |
x1 +
|
||||
| [13(x1)] | = |
x1 +
|
||||
| [14(x1)] | = |
x1 +
|
||||
| [15(x1)] | = |
x1 +
|
||||
| [00(x1)] | = |
x1 +
|
||||
| [01(x1)] | = |
x1 +
|
||||
| [02(x1)] | = |
x1 +
|
||||
| [03(x1)] | = |
x1 +
|
||||
| [04(x1)] | = |
x1 +
|
||||
| [05(x1)] | = |
x1 +
|
||||
| [12#(x1)] | = |
x1 +
|
| 05(05(05(01(45(x1))))) | → | 03(25(03(25(05(01(45(x1))))))) | (704) |
| 05(05(05(01(44(x1))))) | → | 03(25(03(25(05(01(44(x1))))))) | (705) |
| 05(05(05(01(43(x1))))) | → | 03(25(03(25(05(01(43(x1))))))) | (706) |
| 05(05(05(01(42(x1))))) | → | 03(25(03(25(05(01(42(x1))))))) | (707) |
| 05(05(05(01(41(x1))))) | → | 03(25(03(25(05(01(41(x1))))))) | (708) |
| 05(05(05(01(40(x1))))) | → | 03(25(03(25(05(01(40(x1))))))) | (709) |
| 25(05(05(01(45(x1))))) | → | 23(25(03(25(05(01(45(x1))))))) | (716) |
| 25(05(05(01(44(x1))))) | → | 23(25(03(25(05(01(44(x1))))))) | (717) |
| 25(05(05(01(43(x1))))) | → | 23(25(03(25(05(01(43(x1))))))) | (718) |
| 25(05(05(01(42(x1))))) | → | 23(25(03(25(05(01(42(x1))))))) | (719) |
| 25(05(05(01(41(x1))))) | → | 23(25(03(25(05(01(41(x1))))))) | (720) |
| 25(05(05(01(40(x1))))) | → | 23(25(03(25(05(01(40(x1))))))) | (721) |
| 02(35(03(25(04(x1))))) | → | 05(02(35(04(13(24(14(x1))))))) | (1245) |
| 02(35(00(55(04(x1))))) | → | 00(55(02(35(04(14(14(x1))))))) | (1317) |
| 11(44(15(05(04(x1))))) | → | 15(05(04(14(11(44(14(x1))))))) | (1503) |
| 05(04(11(42(32(35(x1)))))) | → | 05(04(14(11(42(32(35(x1))))))) | (1712) |
| 05(04(11(42(32(34(x1)))))) | → | 05(04(14(11(42(32(34(x1))))))) | (1713) |
| 05(04(11(42(32(33(x1)))))) | → | 05(04(14(11(42(32(33(x1))))))) | (1714) |
| 05(04(11(42(32(32(x1)))))) | → | 05(04(14(11(42(32(32(x1))))))) | (1715) |
| 05(04(11(42(32(31(x1)))))) | → | 05(04(14(11(42(32(31(x1))))))) | (1716) |
| 05(04(11(42(32(30(x1)))))) | → | 05(04(14(11(42(32(30(x1))))))) | (1717) |
| 15(04(11(42(32(35(x1)))))) | → | 15(04(14(11(42(32(35(x1))))))) | (1718) |
| 15(04(11(42(32(34(x1)))))) | → | 15(04(14(11(42(32(34(x1))))))) | (1719) |
| 15(04(11(42(32(33(x1)))))) | → | 15(04(14(11(42(32(33(x1))))))) | (1720) |
| 15(04(11(42(32(32(x1)))))) | → | 15(04(14(11(42(32(32(x1))))))) | (1721) |
| 15(04(11(42(32(31(x1)))))) | → | 15(04(14(11(42(32(31(x1))))))) | (1722) |
| 15(04(11(42(32(30(x1)))))) | → | 15(04(14(11(42(32(30(x1))))))) | (1723) |
| 25(04(11(42(32(35(x1)))))) | → | 25(04(14(11(42(32(35(x1))))))) | (1724) |
| 25(04(11(42(32(34(x1)))))) | → | 25(04(14(11(42(32(34(x1))))))) | (1725) |
| 25(04(11(42(32(33(x1)))))) | → | 25(04(14(11(42(32(33(x1))))))) | (1726) |
| 25(04(11(42(32(32(x1)))))) | → | 25(04(14(11(42(32(32(x1))))))) | (1727) |
| 25(04(11(42(32(31(x1)))))) | → | 25(04(14(11(42(32(31(x1))))))) | (1728) |
| 25(04(11(42(32(30(x1)))))) | → | 25(04(14(11(42(32(30(x1))))))) | (1729) |
| 35(04(11(42(32(35(x1)))))) | → | 35(04(14(11(42(32(35(x1))))))) | (1730) |
| 35(04(11(42(32(34(x1)))))) | → | 35(04(14(11(42(32(34(x1))))))) | (1731) |
| 35(04(11(42(32(33(x1)))))) | → | 35(04(14(11(42(32(33(x1))))))) | (1732) |
| 35(04(11(42(32(32(x1)))))) | → | 35(04(14(11(42(32(32(x1))))))) | (1733) |
| 35(04(11(42(32(31(x1)))))) | → | 35(04(14(11(42(32(31(x1))))))) | (1734) |
| 35(04(11(42(32(30(x1)))))) | → | 35(04(14(11(42(32(30(x1))))))) | (1735) |
| 45(04(11(42(32(35(x1)))))) | → | 45(04(14(11(42(32(35(x1))))))) | (1736) |
| 45(04(11(42(32(34(x1)))))) | → | 45(04(14(11(42(32(34(x1))))))) | (1737) |
| 45(04(11(42(32(33(x1)))))) | → | 45(04(14(11(42(32(33(x1))))))) | (1738) |
| 45(04(11(42(32(32(x1)))))) | → | 45(04(14(11(42(32(32(x1))))))) | (1739) |
| 45(04(11(42(32(31(x1)))))) | → | 45(04(14(11(42(32(31(x1))))))) | (1740) |
| 45(04(11(42(32(30(x1)))))) | → | 45(04(14(11(42(32(30(x1))))))) | (1741) |
| 55(04(11(42(32(35(x1)))))) | → | 55(04(14(11(42(32(35(x1))))))) | (1742) |
| 55(04(11(42(32(34(x1)))))) | → | 55(04(14(11(42(32(34(x1))))))) | (1743) |
| 55(04(11(42(32(33(x1)))))) | → | 55(04(14(11(42(32(33(x1))))))) | (1744) |
| 55(04(11(42(32(32(x1)))))) | → | 55(04(14(11(42(32(32(x1))))))) | (1745) |
| 55(04(11(42(32(31(x1)))))) | → | 55(04(14(11(42(32(31(x1))))))) | (1746) |
| 55(04(11(42(32(30(x1)))))) | → | 55(04(14(11(42(32(30(x1))))))) | (1747) |
| 01(45(04(15(02(35(x1)))))) | → | 01(45(02(35(04(14(15(x1))))))) | (1928) |
| 01(45(04(15(02(34(x1)))))) | → | 01(45(02(35(04(14(14(x1))))))) | (1929) |
| 11(45(04(15(02(35(x1)))))) | → | 11(45(02(35(04(14(15(x1))))))) | (1934) |
| 11(45(04(15(02(34(x1)))))) | → | 11(45(02(35(04(14(14(x1))))))) | (1935) |
| 31(45(04(15(02(35(x1)))))) | → | 31(45(02(35(04(14(15(x1))))))) | (1946) |
| 31(45(04(15(02(34(x1)))))) | → | 31(45(02(35(04(14(14(x1))))))) | (1947) |
| 41(45(04(15(02(35(x1)))))) | → | 41(45(02(35(04(14(15(x1))))))) | (1952) |
| 41(45(04(15(02(34(x1)))))) | → | 41(45(02(35(04(14(14(x1))))))) | (1953) |
| 01(44(11(41(45(01(x1)))))) | → | 01(45(01(44(14(11(41(x1))))))) | (1968) |
| 11(44(11(41(45(01(x1)))))) | → | 11(45(01(44(14(11(41(x1))))))) | (1974) |
| 31(44(11(41(45(01(x1)))))) | → | 31(45(01(44(14(11(41(x1))))))) | (1986) |
| 41(44(11(41(45(01(x1)))))) | → | 41(45(01(44(14(11(41(x1))))))) | (1992) |
| 12#(34(15(05(05(x1))))) | → | 12#(35(05(05(x1)))) | (2228) |
| 12#(34(15(05(01(x1))))) | → | 12#(35(05(01(x1)))) | (2220) |
| 12#(34(15(05(02(x1))))) | → | 12#(35(05(02(x1)))) | (2222) |
| 12#(34(15(05(04(x1))))) | → | 12#(35(05(04(x1)))) | (2226) |
| 01(45(04(15(02(34(x1)))))) | → | 01(45(02(35(04(14(14(x1))))))) | (1929) |
| 11(45(04(15(02(34(x1)))))) | → | 11(45(02(35(04(14(14(x1))))))) | (1935) |
| 31(45(04(15(02(34(x1)))))) | → | 31(45(02(35(04(14(14(x1))))))) | (1947) |
| 41(45(04(15(02(34(x1)))))) | → | 41(45(02(35(04(14(14(x1))))))) | (1953) |
The dependency pairs are split into 0 components.