Certification Problem

Input (TPDB SRS_Standard/ICFP_2010/213051)

The rewrite relation of the following TRS is considered.

0(0(1(x1))) 0(1(2(0(3(x1))))) (1)
0(0(1(x1))) 0(1(2(0(3(2(x1)))))) (2)
0(0(1(x1))) 1(2(0(0(3(2(x1)))))) (3)
0(1(0(x1))) 2(0(3(1(2(0(x1)))))) (4)
0(4(1(x1))) 4(0(3(1(x1)))) (5)
0(4(1(x1))) 2(4(0(3(2(1(x1)))))) (6)
0(4(1(x1))) 2(4(0(5(3(1(x1)))))) (7)
0(4(1(x1))) 4(2(1(2(0(3(x1)))))) (8)
4(1(0(x1))) 1(2(0(4(x1)))) (9)
0(0(1(1(x1)))) 1(2(0(0(3(1(x1)))))) (10)
0(0(2(1(x1)))) 2(2(0(3(0(1(x1)))))) (11)
0(0(4(1(x1)))) 1(4(0(3(0(3(x1)))))) (12)
0(0(5(1(x1)))) 0(0(3(1(2(5(x1)))))) (13)
0(1(1(0(x1)))) 1(2(0(0(1(2(x1)))))) (14)
0(1(4(1(x1)))) 0(1(2(4(1(2(x1)))))) (15)
0(1(5(0(x1)))) 1(2(5(0(0(3(x1)))))) (16)
0(2(4(1(x1)))) 4(0(5(3(1(2(x1)))))) (17)
0(4(1(0(x1)))) 0(4(0(1(2(x1))))) (18)
0(4(2(1(x1)))) 4(0(3(2(2(1(x1)))))) (19)
0(4(2(1(x1)))) 4(0(3(5(1(2(x1)))))) (20)
0(4(4(1(x1)))) 2(4(0(3(4(1(x1)))))) (21)
0(5(0(1(x1)))) 0(2(0(3(5(1(x1)))))) (22)
0(5(0(1(x1)))) 5(2(0(3(0(1(x1)))))) (23)
0(5(1(0(x1)))) 0(1(2(0(3(5(x1)))))) (24)
0(5(1(0(x1)))) 2(0(1(3(5(0(x1)))))) (25)
4(0(5(1(x1)))) 1(4(0(5(3(2(x1)))))) (26)
4(1(0(0(x1)))) 0(4(1(2(0(x1))))) (27)
4(1(0(1(x1)))) 1(1(2(0(4(x1))))) (28)
4(1(5(0(x1)))) 1(2(0(5(4(x1))))) (29)
4(1(5(0(x1)))) 1(4(0(3(5(x1))))) (30)
4(3(1(0(x1)))) 1(4(2(0(3(x1))))) (31)
4(3(1(0(x1)))) 2(0(2(1(3(4(x1)))))) (32)
4(3(1(0(x1)))) 2(1(4(2(0(3(x1)))))) (33)
4(3(1(0(x1)))) 2(2(4(0(1(3(x1)))))) (34)
5(0(1(0(x1)))) 0(3(5(1(2(0(x1)))))) (35)
5(0(1(0(x1)))) 1(5(2(0(3(0(x1)))))) (36)
5(4(1(0(x1)))) 0(1(2(4(5(2(x1)))))) (37)
0(0(5(5(1(x1))))) 1(0(0(3(5(5(x1)))))) (38)
0(1(0(5(0(x1))))) 0(1(5(2(0(0(x1)))))) (39)
0(2(5(0(1(x1))))) 2(0(3(5(0(1(x1)))))) (40)
0(3(1(0(0(x1))))) 0(0(3(0(1(2(x1)))))) (41)
0(4(1(4(1(x1))))) 4(4(0(1(2(1(x1)))))) (42)
0(5(5(4(1(x1))))) 4(1(0(5(5(3(x1)))))) (43)
4(1(5(0(0(x1))))) 1(2(0(4(5(0(x1)))))) (44)
4(1(5(5(0(x1))))) 5(1(3(0(5(4(x1)))))) (45)
4(3(1(0(1(x1))))) 1(1(2(3(0(4(x1)))))) (46)
4(3(1(1(0(x1))))) 1(2(0(1(4(3(x1)))))) (47)
4(3(1(5(0(x1))))) 5(1(0(3(2(4(x1)))))) (48)
4(4(1(0(5(x1))))) 4(0(5(3(4(1(x1)))))) (49)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by matchbox @ termCOMP 2023)

1 String Reversal

Since only unary symbols occur, one can reverse all terms and obtains the TRS
1(0(0(x1))) 3(0(2(1(0(x1))))) (50)
1(0(0(x1))) 2(3(0(2(1(0(x1)))))) (51)
1(0(0(x1))) 2(3(0(0(2(1(x1)))))) (52)
0(1(0(x1))) 0(2(1(3(0(2(x1)))))) (53)
1(4(0(x1))) 1(3(0(4(x1)))) (54)
1(4(0(x1))) 1(2(3(0(4(2(x1)))))) (55)
1(4(0(x1))) 1(3(5(0(4(2(x1)))))) (56)
1(4(0(x1))) 3(0(2(1(2(4(x1)))))) (57)
0(1(4(x1))) 4(0(2(1(x1)))) (58)
1(1(0(0(x1)))) 1(3(0(0(2(1(x1)))))) (59)
1(2(0(0(x1)))) 1(0(3(0(2(2(x1)))))) (60)
1(4(0(0(x1)))) 3(0(3(0(4(1(x1)))))) (61)
1(5(0(0(x1)))) 5(2(1(3(0(0(x1)))))) (62)
0(1(1(0(x1)))) 2(1(0(0(2(1(x1)))))) (63)
1(4(1(0(x1)))) 2(1(4(2(1(0(x1)))))) (64)
0(5(1(0(x1)))) 3(0(0(5(2(1(x1)))))) (65)
1(4(2(0(x1)))) 2(1(3(5(0(4(x1)))))) (66)
0(1(4(0(x1)))) 2(1(0(4(0(x1))))) (67)
1(2(4(0(x1)))) 1(2(2(3(0(4(x1)))))) (68)
1(2(4(0(x1)))) 2(1(5(3(0(4(x1)))))) (69)
1(4(4(0(x1)))) 1(4(3(0(4(2(x1)))))) (70)
1(0(5(0(x1)))) 1(5(3(0(2(0(x1)))))) (71)
1(0(5(0(x1)))) 1(0(3(0(2(5(x1)))))) (72)
0(1(5(0(x1)))) 5(3(0(2(1(0(x1)))))) (73)
0(1(5(0(x1)))) 0(5(3(1(0(2(x1)))))) (74)
1(5(0(4(x1)))) 2(3(5(0(4(1(x1)))))) (75)
0(0(1(4(x1)))) 0(2(1(4(0(x1))))) (76)
1(0(1(4(x1)))) 4(0(2(1(1(x1))))) (77)
0(5(1(4(x1)))) 4(5(0(2(1(x1))))) (78)
0(5(1(4(x1)))) 5(3(0(4(1(x1))))) (79)
0(1(3(4(x1)))) 3(0(2(4(1(x1))))) (80)
0(1(3(4(x1)))) 4(3(1(2(0(2(x1)))))) (81)
0(1(3(4(x1)))) 3(0(2(4(1(2(x1)))))) (82)
0(1(3(4(x1)))) 3(1(0(4(2(2(x1)))))) (83)
0(1(0(5(x1)))) 0(2(1(5(3(0(x1)))))) (84)
0(1(0(5(x1)))) 0(3(0(2(5(1(x1)))))) (85)
0(1(4(5(x1)))) 2(5(4(2(1(0(x1)))))) (86)
1(5(5(0(0(x1))))) 5(5(3(0(0(1(x1)))))) (87)
0(5(0(1(0(x1))))) 0(0(2(5(1(0(x1)))))) (88)
1(0(5(2(0(x1))))) 1(0(5(3(0(2(x1)))))) (89)
0(0(1(3(0(x1))))) 2(1(0(3(0(0(x1)))))) (90)
1(4(1(4(0(x1))))) 1(2(1(0(4(4(x1)))))) (91)
1(4(5(5(0(x1))))) 3(5(5(0(1(4(x1)))))) (92)
0(0(5(1(4(x1))))) 0(5(4(0(2(1(x1)))))) (93)
0(5(5(1(4(x1))))) 4(5(0(3(1(5(x1)))))) (94)
1(0(1(3(4(x1))))) 4(0(3(2(1(1(x1)))))) (95)
0(1(1(3(4(x1))))) 3(4(1(0(2(1(x1)))))) (96)
0(5(1(3(4(x1))))) 4(2(3(0(1(5(x1)))))) (97)
5(0(1(4(4(x1))))) 1(4(3(5(0(4(x1)))))) (98)

1.1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.

There are 139 ruless (increase limit for explicit display).

1.1.1 Monotonic Reduction Pair Processor with Usable Rules

Using the matrix interpretations of dimension 1 with strict dimension 1 over the rationals with delta = 1
[5(x1)] = x1 +
0
[4(x1)] = x1 +
1
[3(x1)] = x1 +
0
[2(x1)] = x1 +
0
[1(x1)] = x1 +
1
[0(x1)] = x1 +
1
[5#(x1)] = x1 +
0
[1#(x1)] = x1 +
1
[0#(x1)] = x1 +
1
together with the usable rules
1(0(0(x1))) 3(0(2(1(0(x1))))) (50)
1(0(0(x1))) 2(3(0(2(1(0(x1)))))) (51)
1(0(0(x1))) 2(3(0(0(2(1(x1)))))) (52)
0(1(0(x1))) 0(2(1(3(0(2(x1)))))) (53)
1(4(0(x1))) 1(3(0(4(x1)))) (54)
1(4(0(x1))) 1(2(3(0(4(2(x1)))))) (55)
1(4(0(x1))) 1(3(5(0(4(2(x1)))))) (56)
1(4(0(x1))) 3(0(2(1(2(4(x1)))))) (57)
0(1(4(x1))) 4(0(2(1(x1)))) (58)
1(1(0(0(x1)))) 1(3(0(0(2(1(x1)))))) (59)
1(2(0(0(x1)))) 1(0(3(0(2(2(x1)))))) (60)
1(4(0(0(x1)))) 3(0(3(0(4(1(x1)))))) (61)
1(5(0(0(x1)))) 5(2(1(3(0(0(x1)))))) (62)
0(1(1(0(x1)))) 2(1(0(0(2(1(x1)))))) (63)
1(4(1(0(x1)))) 2(1(4(2(1(0(x1)))))) (64)
0(5(1(0(x1)))) 3(0(0(5(2(1(x1)))))) (65)
1(4(2(0(x1)))) 2(1(3(5(0(4(x1)))))) (66)
0(1(4(0(x1)))) 2(1(0(4(0(x1))))) (67)
1(2(4(0(x1)))) 1(2(2(3(0(4(x1)))))) (68)
1(2(4(0(x1)))) 2(1(5(3(0(4(x1)))))) (69)
1(4(4(0(x1)))) 1(4(3(0(4(2(x1)))))) (70)
1(0(5(0(x1)))) 1(5(3(0(2(0(x1)))))) (71)
1(0(5(0(x1)))) 1(0(3(0(2(5(x1)))))) (72)
0(1(5(0(x1)))) 5(3(0(2(1(0(x1)))))) (73)
0(1(5(0(x1)))) 0(5(3(1(0(2(x1)))))) (74)
1(5(0(4(x1)))) 2(3(5(0(4(1(x1)))))) (75)
0(0(1(4(x1)))) 0(2(1(4(0(x1))))) (76)
1(0(1(4(x1)))) 4(0(2(1(1(x1))))) (77)
0(5(1(4(x1)))) 4(5(0(2(1(x1))))) (78)
0(5(1(4(x1)))) 5(3(0(4(1(x1))))) (79)
0(1(3(4(x1)))) 3(0(2(4(1(x1))))) (80)
0(1(3(4(x1)))) 4(3(1(2(0(2(x1)))))) (81)
0(1(3(4(x1)))) 3(0(2(4(1(2(x1)))))) (82)
0(1(3(4(x1)))) 3(1(0(4(2(2(x1)))))) (83)
0(1(0(5(x1)))) 0(2(1(5(3(0(x1)))))) (84)
0(1(0(5(x1)))) 0(3(0(2(5(1(x1)))))) (85)
0(1(4(5(x1)))) 2(5(4(2(1(0(x1)))))) (86)
1(5(5(0(0(x1))))) 5(5(3(0(0(1(x1)))))) (87)
0(5(0(1(0(x1))))) 0(0(2(5(1(0(x1)))))) (88)
1(0(5(2(0(x1))))) 1(0(5(3(0(2(x1)))))) (89)
0(0(1(3(0(x1))))) 2(1(0(3(0(0(x1)))))) (90)
1(4(1(4(0(x1))))) 1(2(1(0(4(4(x1)))))) (91)
1(4(5(5(0(x1))))) 3(5(5(0(1(4(x1)))))) (92)
0(0(5(1(4(x1))))) 0(5(4(0(2(1(x1)))))) (93)
0(5(5(1(4(x1))))) 4(5(0(3(1(5(x1)))))) (94)
1(0(1(3(4(x1))))) 4(0(3(2(1(1(x1)))))) (95)
0(1(1(3(4(x1))))) 3(4(1(0(2(1(x1)))))) (96)
0(5(1(3(4(x1))))) 4(2(3(0(1(5(x1)))))) (97)
5(0(1(4(4(x1))))) 1(4(3(5(0(4(x1)))))) (98)
(w.r.t. the implicit argument filter of the reduction pair), the pairs
5#(0(1(4(4(x1))))) 5#(0(4(x1))) (99)
5#(0(1(4(4(x1))))) 0#(4(x1)) (101)
1#(5(5(0(0(x1))))) 1#(x1) (104)
1#(5(5(0(0(x1))))) 0#(1(x1)) (105)
1#(5(0(4(x1)))) 1#(x1) (108)
1#(4(5(5(0(x1))))) 1#(4(x1)) (114)
1#(4(4(0(x1)))) 0#(4(2(x1))) (117)
1#(4(2(0(x1)))) 5#(0(4(x1))) (118)
1#(4(2(0(x1)))) 0#(4(x1)) (120)
1#(4(1(4(0(x1))))) 1#(0(4(4(x1)))) (122)
1#(4(1(4(0(x1))))) 0#(4(4(x1))) (123)
1#(4(0(x1))) 5#(0(4(2(x1)))) (125)
1#(4(0(x1))) 1#(2(4(x1))) (128)
1#(4(0(x1))) 0#(4(x1)) (130)
1#(4(0(x1))) 0#(4(2(x1))) (131)
1#(4(0(0(x1)))) 1#(x1) (133)
1#(4(0(0(x1)))) 0#(4(1(x1))) (134)
1#(2(4(0(x1)))) 5#(3(0(4(x1)))) (136)
1#(2(4(0(x1)))) 0#(4(x1)) (139)
1#(2(0(0(x1)))) 0#(3(0(2(2(x1))))) (141)
1#(2(0(0(x1)))) 0#(2(2(x1))) (142)
1#(1(0(0(x1)))) 1#(x1) (143)
1#(1(0(0(x1)))) 0#(2(1(x1))) (145)
1#(1(0(0(x1)))) 0#(0(2(1(x1)))) (146)
1#(0(5(2(0(x1))))) 5#(3(0(2(x1)))) (147)
1#(0(5(2(0(x1))))) 0#(5(3(0(2(x1))))) (149)
1#(0(5(2(0(x1))))) 0#(2(x1)) (150)
1#(0(5(0(x1)))) 5#(x1) (151)
1#(0(5(0(x1)))) 5#(3(0(2(0(x1))))) (152)
1#(0(5(0(x1)))) 0#(3(0(2(5(x1))))) (155)
1#(0(5(0(x1)))) 0#(2(5(x1))) (156)
1#(0(5(0(x1)))) 0#(2(0(x1))) (157)
1#(0(1(4(x1)))) 1#(x1) (158)
1#(0(1(4(x1)))) 1#(1(x1)) (159)
1#(0(1(4(x1)))) 0#(2(1(1(x1)))) (160)
1#(0(1(3(4(x1))))) 1#(x1) (161)
1#(0(1(3(4(x1))))) 1#(1(x1)) (162)
1#(0(1(3(4(x1))))) 0#(3(2(1(1(x1))))) (163)
1#(0(0(x1))) 1#(x1) (164)
1#(0(0(x1))) 1#(0(x1)) (165)
1#(0(0(x1))) 0#(2(1(x1))) (166)
0#(5(5(1(4(x1))))) 5#(x1) (169)
0#(5(5(1(4(x1))))) 5#(0(3(1(5(x1))))) (170)
0#(5(5(1(4(x1))))) 1#(5(x1)) (171)
0#(5(5(1(4(x1))))) 0#(3(1(5(x1)))) (172)
0#(5(1(4(x1)))) 5#(0(2(1(x1)))) (174)
0#(5(1(4(x1)))) 1#(x1) (175)
0#(5(1(4(x1)))) 0#(2(1(x1))) (177)
0#(5(1(3(4(x1))))) 5#(x1) (178)
0#(5(1(3(4(x1))))) 1#(5(x1)) (179)
0#(5(1(3(4(x1))))) 0#(1(5(x1))) (180)
0#(5(1(0(x1)))) 5#(2(1(x1))) (181)
0#(5(1(0(x1)))) 1#(x1) (182)
0#(5(1(0(x1)))) 0#(5(2(1(x1)))) (183)
0#(5(0(1(0(x1))))) 5#(1(0(x1))) (185)
0#(5(0(1(0(x1))))) 0#(2(5(1(0(x1))))) (186)
0#(1(5(0(x1)))) 5#(3(1(0(2(x1))))) (188)
0#(1(5(0(x1)))) 1#(0(x1)) (190)
0#(1(5(0(x1)))) 1#(0(2(x1))) (191)
0#(1(5(0(x1)))) 0#(2(x1)) (193)
0#(1(4(x1))) 1#(x1) (195)
0#(1(4(x1))) 0#(2(1(x1))) (196)
0#(1(4(5(x1)))) 1#(0(x1)) (198)
0#(1(4(5(x1)))) 0#(x1) (199)
0#(1(4(0(x1)))) 0#(4(0(x1))) (201)
0#(1(3(4(x1)))) 1#(x1) (202)
0#(1(3(4(x1)))) 1#(2(x1)) (203)
0#(1(3(4(x1)))) 1#(2(0(2(x1)))) (204)
0#(1(3(4(x1)))) 0#(4(2(2(x1)))) (206)
0#(1(3(4(x1)))) 0#(2(x1)) (207)
0#(1(1(3(4(x1))))) 1#(x1) (210)
0#(1(1(3(4(x1))))) 1#(0(2(1(x1)))) (211)
0#(1(1(3(4(x1))))) 0#(2(1(x1))) (212)
0#(1(1(0(x1)))) 1#(x1) (213)
0#(1(1(0(x1)))) 0#(2(1(x1))) (215)
0#(1(1(0(x1)))) 0#(0(2(1(x1)))) (216)
0#(1(0(x1))) 1#(3(0(2(x1)))) (217)
0#(1(0(x1))) 0#(2(x1)) (218)
0#(1(0(5(x1)))) 5#(3(0(x1))) (220)
0#(1(0(5(x1)))) 5#(1(x1)) (221)
0#(1(0(5(x1)))) 1#(x1) (222)
0#(1(0(5(x1)))) 1#(5(3(0(x1)))) (223)
0#(1(0(5(x1)))) 0#(x1) (224)
0#(1(0(5(x1)))) 0#(2(5(1(x1)))) (226)
0#(0(5(1(4(x1))))) 5#(4(0(2(1(x1))))) (228)
0#(0(5(1(4(x1))))) 1#(x1) (229)
0#(0(5(1(4(x1))))) 0#(2(1(x1))) (231)
0#(0(1(4(x1)))) 1#(4(0(x1))) (232)
0#(0(1(4(x1)))) 0#(x1) (233)
0#(0(1(3(0(x1))))) 0#(3(0(0(x1)))) (236)
0#(0(1(3(0(x1))))) 0#(0(x1)) (237)
and no rules could be deleted.

1.1.1.1 Dependency Graph Processor

The dependency pairs are split into 0 components.