The rewrite relation of the following TRS is considered.
0(1(0(1(x1)))) |
→ |
0(1(1(1(0(0(1(2(2(2(x1)))))))))) |
(1) |
0(3(4(4(x1)))) |
→ |
0(0(0(3(1(1(4(2(2(0(x1)))))))))) |
(2) |
1(5(1(5(4(x1))))) |
→ |
1(0(0(2(2(0(5(2(2(4(x1)))))))))) |
(3) |
3(4(5(3(4(x1))))) |
→ |
3(5(0(2(1(1(1(2(1(4(x1)))))))))) |
(4) |
4(3(4(3(4(x1))))) |
→ |
2(1(1(1(4(1(2(4(2(0(x1)))))))))) |
(5) |
5(0(1(0(1(x1))))) |
→ |
5(0(2(0(1(1(4(2(1(2(x1)))))))))) |
(6) |
1(0(1(0(1(4(x1)))))) |
→ |
1(0(2(4(5(4(2(4(2(4(x1)))))))))) |
(7) |
1(1(3(4(1(5(x1)))))) |
→ |
1(1(0(0(2(2(5(2(0(0(x1)))))))))) |
(8) |
1(3(1(1(3(3(x1)))))) |
→ |
1(2(4(2(0(2(1(0(2(5(x1)))))))))) |
(9) |
1(3(1(5(2(3(x1)))))) |
→ |
1(4(3(2(1(0(0(2(4(3(x1)))))))))) |
(10) |
1(5(0(5(5(3(x1)))))) |
→ |
2(1(1(1(1(2(1(3(5(3(x1)))))))))) |
(11) |
2(1(3(1(5(5(x1)))))) |
→ |
1(1(2(2(0(5(0(0(2(2(x1)))))))))) |
(12) |
2(2(4(3(4(5(x1)))))) |
→ |
2(0(1(4(0(0(2(0(0(0(x1)))))))))) |
(13) |
2(3(1(0(3(4(x1)))))) |
→ |
0(0(1(1(5(2(4(1(1(4(x1)))))))))) |
(14) |
2(3(3(4(1(5(x1)))))) |
→ |
0(0(2(4(4(2(0(4(1(3(x1)))))))))) |
(15) |
2(5(0(5(5(1(x1)))))) |
→ |
3(0(1(4(4(0(0(0(0(1(x1)))))))))) |
(16) |
3(0(4(3(3(4(x1)))))) |
→ |
2(3(0(3(5(1(2(4(2(4(x1)))))))))) |
(17) |
3(2(3(3(0(4(x1)))))) |
→ |
5(4(2(2(0(0(4(2(4(4(x1)))))))))) |
(18) |
3(3(5(4(3(4(x1)))))) |
→ |
0(5(1(1(0(4(0(2(4(4(x1)))))))))) |
(19) |
3(5(4(2(1(0(x1)))))) |
→ |
2(5(0(0(0(0(0(4(4(0(x1)))))))))) |
(20) |
4(1(3(4(3(1(x1)))))) |
→ |
4(2(5(0(1(0(0(0(4(4(x1)))))))))) |
(21) |
4(2(1(0(2(5(x1)))))) |
→ |
4(2(5(4(2(2(2(4(2(5(x1)))))))))) |
(22) |
4(3(3(5(1(1(x1)))))) |
→ |
4(4(2(4(4(2(5(0(1(2(x1)))))))))) |
(23) |
5(4(0(1(3(0(x1)))))) |
→ |
0(2(4(2(2(1(2(0(0(0(x1)))))))))) |
(24) |
0(4(1(5(5(3(5(x1))))))) |
→ |
0(2(2(0(1(2(5(2(5(0(x1)))))))))) |
(25) |
0(4(4(3(4(1(3(x1))))))) |
→ |
0(4(2(4(1(3(2(0(2(2(x1)))))))))) |
(26) |
1(3(3(4(5(2(5(x1))))))) |
→ |
1(1(1(4(5(1(2(5(2(4(x1)))))))))) |
(27) |
1(5(2(5(1(5(2(x1))))))) |
→ |
1(2(3(0(2(3(0(1(0(2(x1)))))))))) |
(28) |
1(5(3(2(4(5(4(x1))))))) |
→ |
1(1(0(3(0(0(0(0(3(4(x1)))))))))) |
(29) |
1(5(5(5(3(2(1(x1))))))) |
→ |
1(4(1(4(2(1(3(0(1(1(x1)))))))))) |
(30) |
2(1(2(3(1(3(3(x1))))))) |
→ |
2(1(4(1(5(1(1(1(1(1(x1)))))))))) |
(31) |
3(0(2(1(3(2(1(x1))))))) |
→ |
1(2(0(0(3(3(4(2(2(1(x1)))))))))) |
(32) |
3(0(4(4(3(4(5(x1))))))) |
→ |
1(2(2(4(3(2(2(2(0(4(x1)))))))))) |
(33) |
3(1(3(1(5(4(1(x1))))))) |
→ |
0(1(2(2(5(5(5(4(2(0(x1)))))))))) |
(34) |
3(2(5(2(1(3(4(x1))))))) |
→ |
0(2(1(3(1(2(1(4(2(2(x1)))))))))) |
(35) |
3(3(1(3(1(3(3(x1))))))) |
→ |
1(2(1(3(0(5(5(1(2(1(x1)))))))))) |
(36) |
3(3(1(5(0(3(4(x1))))))) |
→ |
2(0(0(5(1(2(1(4(1(4(x1)))))))))) |
(37) |
3(3(3(5(2(4(5(x1))))))) |
→ |
3(1(0(0(1(4(2(2(0(5(x1)))))))))) |
(38) |
3(4(3(3(4(3(5(x1))))))) |
→ |
5(1(1(1(1(1(4(2(3(3(x1)))))))))) |
(39) |
3(4(3(4(4(3(2(x1))))))) |
→ |
2(5(4(5(3(4(2(4(4(0(x1)))))))))) |
(40) |
4(1(3(4(1(0(2(x1))))))) |
→ |
4(4(1(5(1(2(1(4(2(2(x1)))))))))) |
(41) |
4(5(0(4(1(3(1(x1))))))) |
→ |
1(1(1(2(0(0(4(4(5(1(x1)))))))))) |
(42) |
4(5(0(5(3(2(1(x1))))))) |
→ |
1(1(4(1(3(0(2(4(2(1(x1)))))))))) |
(43) |
4(5(0(5(3(4(5(x1))))))) |
→ |
1(1(1(0(5(4(0(2(4(5(x1)))))))))) |
(44) |
4(5(3(1(4(4(3(x1))))))) |
→ |
4(5(5(5(4(2(4(4(2(3(x1)))))))))) |
(45) |
4(5(3(4(1(4(5(x1))))))) |
→ |
4(5(4(0(2(0(1(2(1(0(x1)))))))))) |
(46) |
4(5(4(3(4(1(0(x1))))))) |
→ |
1(4(1(1(2(4(0(1(2(0(x1)))))))))) |
(47) |
5(3(2(1(5(3(4(x1))))))) |
→ |
5(1(2(1(3(3(5(1(2(4(x1)))))))))) |
(48) |
5(3(4(3(1(3(3(x1))))))) |
→ |
5(1(1(4(2(4(3(3(4(3(x1)))))))))) |
(49) |
5(3(4(4(3(1(2(x1))))))) |
→ |
5(1(0(5(0(3(5(1(1(1(x1)))))))))) |
(50) |
5(4(3(2(3(1(3(x1))))))) |
→ |
0(0(0(2(3(0(2(5(4(3(x1)))))))))) |
(51) |
5(4(3(4(3(1(5(x1))))))) |
→ |
0(2(0(0(0(0(4(1(5(0(x1)))))))))) |
(52) |
5(5(3(3(3(5(4(x1))))))) |
→ |
0(3(5(2(2(1(0(4(2(2(x1)))))))))) |
(53) |
5(5(4(5(3(5(5(x1))))))) |
→ |
5(2(4(2(2(2(4(1(5(2(x1)))))))))) |
(54) |
There are 324 ruless (increase limit for explicit display).
As carrier we take the set
{0,...,5}.
Symbols are labeled by the interpretation of their arguments using the interpretations
(modulo 6):
There are 1944 ruless (increase limit for explicit display).
There are 1932 ruless (increase limit for explicit display).
14(04(15(04(05(x1))))) |
→ |
24(23(23(13(04(05(15(14(14(04(05(x1))))))))))) |
(2323) |
13(04(15(04(05(x1))))) |
→ |
23(23(23(13(04(05(15(14(14(04(05(x1))))))))))) |
(2324) |
14(04(15(04(15(x1))))) |
→ |
24(23(23(13(04(05(15(14(14(04(15(x1))))))))))) |
(2325) |
13(04(15(04(15(x1))))) |
→ |
23(23(23(13(04(05(15(14(14(04(15(x1))))))))))) |
(2326) |
14(04(15(04(25(x1))))) |
→ |
24(23(23(13(04(05(15(14(14(04(25(x1))))))))))) |
(2327) |
13(04(15(04(25(x1))))) |
→ |
23(23(23(13(04(05(15(14(14(04(25(x1))))))))))) |
(2328) |
14(04(15(04(35(x1))))) |
→ |
24(23(23(13(04(05(15(14(14(04(35(x1))))))))))) |
(2329) |
13(04(15(04(35(x1))))) |
→ |
23(23(23(13(04(05(15(14(14(04(35(x1))))))))))) |
(2330) |
14(04(15(04(45(x1))))) |
→ |
24(23(23(13(04(05(15(14(14(04(45(x1))))))))))) |
(2331) |
13(04(15(04(45(x1))))) |
→ |
23(23(23(13(04(05(15(14(14(04(45(x1))))))))))) |
(2332) |
14(04(15(04(55(x1))))) |
→ |
24(23(23(13(04(05(15(14(14(04(55(x1))))))))))) |
(2333) |
13(04(15(04(55(x1))))) |
→ |
23(23(23(13(04(05(15(14(14(04(55(x1))))))))))) |
(2334) |
13#(04(15(04(55(x1))))) |
→ |
13#(04(05(15(14(14(04(55(x1)))))))) |
(2335) |
13#(04(15(04(55(x1))))) |
→ |
14#(14(04(55(x1)))) |
(2336) |
13#(04(15(04(55(x1))))) |
→ |
14#(04(55(x1))) |
(2337) |
13#(04(15(04(45(x1))))) |
→ |
13#(04(05(15(14(14(04(45(x1)))))))) |
(2338) |
13#(04(15(04(45(x1))))) |
→ |
14#(14(04(45(x1)))) |
(2339) |
13#(04(15(04(45(x1))))) |
→ |
14#(04(45(x1))) |
(2340) |
13#(04(15(04(35(x1))))) |
→ |
13#(04(05(15(14(14(04(35(x1)))))))) |
(2341) |
13#(04(15(04(35(x1))))) |
→ |
14#(14(04(35(x1)))) |
(2342) |
13#(04(15(04(35(x1))))) |
→ |
14#(04(35(x1))) |
(2343) |
13#(04(15(04(25(x1))))) |
→ |
13#(04(05(15(14(14(04(25(x1)))))))) |
(2344) |
13#(04(15(04(25(x1))))) |
→ |
14#(14(04(25(x1)))) |
(2345) |
13#(04(15(04(25(x1))))) |
→ |
14#(04(25(x1))) |
(2346) |
13#(04(15(04(15(x1))))) |
→ |
13#(04(05(15(14(14(04(15(x1)))))))) |
(2347) |
13#(04(15(04(15(x1))))) |
→ |
14#(14(04(15(x1)))) |
(2348) |
13#(04(15(04(15(x1))))) |
→ |
14#(04(15(x1))) |
(2349) |
13#(04(15(04(05(x1))))) |
→ |
13#(04(05(15(14(14(04(05(x1)))))))) |
(2350) |
13#(04(15(04(05(x1))))) |
→ |
14#(14(04(05(x1)))) |
(2351) |
13#(04(15(04(05(x1))))) |
→ |
14#(04(05(x1))) |
(2352) |
14#(04(15(04(55(x1))))) |
→ |
13#(04(05(15(14(14(04(55(x1)))))))) |
(2353) |
14#(04(15(04(55(x1))))) |
→ |
14#(14(04(55(x1)))) |
(2354) |
14#(04(15(04(55(x1))))) |
→ |
14#(04(55(x1))) |
(2355) |
14#(04(15(04(45(x1))))) |
→ |
13#(04(05(15(14(14(04(45(x1)))))))) |
(2356) |
14#(04(15(04(45(x1))))) |
→ |
14#(14(04(45(x1)))) |
(2357) |
14#(04(15(04(45(x1))))) |
→ |
14#(04(45(x1))) |
(2358) |
14#(04(15(04(35(x1))))) |
→ |
13#(04(05(15(14(14(04(35(x1)))))))) |
(2359) |
14#(04(15(04(35(x1))))) |
→ |
14#(14(04(35(x1)))) |
(2360) |
14#(04(15(04(35(x1))))) |
→ |
14#(04(35(x1))) |
(2361) |
14#(04(15(04(25(x1))))) |
→ |
13#(04(05(15(14(14(04(25(x1)))))))) |
(2362) |
14#(04(15(04(25(x1))))) |
→ |
14#(14(04(25(x1)))) |
(2363) |
14#(04(15(04(25(x1))))) |
→ |
14#(04(25(x1))) |
(2364) |
14#(04(15(04(15(x1))))) |
→ |
13#(04(05(15(14(14(04(15(x1)))))))) |
(2365) |
14#(04(15(04(15(x1))))) |
→ |
14#(14(04(15(x1)))) |
(2366) |
14#(04(15(04(15(x1))))) |
→ |
14#(04(15(x1))) |
(2367) |
14#(04(15(04(05(x1))))) |
→ |
13#(04(05(15(14(14(04(05(x1)))))))) |
(2368) |
14#(04(15(04(05(x1))))) |
→ |
14#(14(04(05(x1)))) |
(2369) |
14#(04(15(04(05(x1))))) |
→ |
14#(04(05(x1))) |
(2370) |
14(04(15(04(05(x1))))) |
→ |
24(23(23(13(04(05(15(14(14(04(05(x1))))))))))) |
(2323) |
13(04(15(04(05(x1))))) |
→ |
23(23(23(13(04(05(15(14(14(04(05(x1))))))))))) |
(2324) |
14(04(15(04(15(x1))))) |
→ |
24(23(23(13(04(05(15(14(14(04(15(x1))))))))))) |
(2325) |
13(04(15(04(15(x1))))) |
→ |
23(23(23(13(04(05(15(14(14(04(15(x1))))))))))) |
(2326) |
14(04(15(04(25(x1))))) |
→ |
24(23(23(13(04(05(15(14(14(04(25(x1))))))))))) |
(2327) |
13(04(15(04(25(x1))))) |
→ |
23(23(23(13(04(05(15(14(14(04(25(x1))))))))))) |
(2328) |
14(04(15(04(35(x1))))) |
→ |
24(23(23(13(04(05(15(14(14(04(35(x1))))))))))) |
(2329) |
13(04(15(04(35(x1))))) |
→ |
23(23(23(13(04(05(15(14(14(04(35(x1))))))))))) |
(2330) |
14(04(15(04(45(x1))))) |
→ |
24(23(23(13(04(05(15(14(14(04(45(x1))))))))))) |
(2331) |
13(04(15(04(45(x1))))) |
→ |
23(23(23(13(04(05(15(14(14(04(45(x1))))))))))) |
(2332) |
14(04(15(04(55(x1))))) |
→ |
24(23(23(13(04(05(15(14(14(04(55(x1))))))))))) |
(2333) |
13(04(15(04(55(x1))))) |
→ |
23(23(23(13(04(05(15(14(14(04(55(x1))))))))))) |
(2334) |
(w.r.t. the implicit argument filter of the reduction pair),
the
pairsThe dependency pairs are split into 0
components.