The rewrite relation of the following TRS is considered.
0(1(0(1(x1)))) | → | 0(1(1(1(0(0(1(2(2(2(x1)))))))))) | (1) |
0(3(4(4(x1)))) | → | 0(0(0(3(1(1(4(2(2(0(x1)))))))))) | (2) |
1(5(1(5(4(x1))))) | → | 1(0(0(2(2(0(5(2(2(4(x1)))))))))) | (3) |
3(4(5(3(4(x1))))) | → | 3(5(0(2(1(1(1(2(1(4(x1)))))))))) | (4) |
4(3(4(3(4(x1))))) | → | 2(1(1(1(4(1(2(4(2(0(x1)))))))))) | (5) |
5(0(1(0(1(x1))))) | → | 5(0(2(0(1(1(4(2(1(2(x1)))))))))) | (6) |
1(0(1(0(1(4(x1)))))) | → | 1(0(2(4(5(4(2(4(2(4(x1)))))))))) | (7) |
1(1(3(4(1(5(x1)))))) | → | 1(1(0(0(2(2(5(2(0(0(x1)))))))))) | (8) |
1(3(1(1(3(3(x1)))))) | → | 1(2(4(2(0(2(1(0(2(5(x1)))))))))) | (9) |
1(3(1(5(2(3(x1)))))) | → | 1(4(3(2(1(0(0(2(4(3(x1)))))))))) | (10) |
1(5(0(5(5(3(x1)))))) | → | 2(1(1(1(1(2(1(3(5(3(x1)))))))))) | (11) |
2(1(3(1(5(5(x1)))))) | → | 1(1(2(2(0(5(0(0(2(2(x1)))))))))) | (12) |
2(2(4(3(4(5(x1)))))) | → | 2(0(1(4(0(0(2(0(0(0(x1)))))))))) | (13) |
2(3(1(0(3(4(x1)))))) | → | 0(0(1(1(5(2(4(1(1(4(x1)))))))))) | (14) |
2(3(3(4(1(5(x1)))))) | → | 0(0(2(4(4(2(0(4(1(3(x1)))))))))) | (15) |
2(5(0(5(5(1(x1)))))) | → | 3(0(1(4(4(0(0(0(0(1(x1)))))))))) | (16) |
3(0(4(3(3(4(x1)))))) | → | 2(3(0(3(5(1(2(4(2(4(x1)))))))))) | (17) |
3(2(3(3(0(4(x1)))))) | → | 5(4(2(2(0(0(4(2(4(4(x1)))))))))) | (18) |
3(3(5(4(3(4(x1)))))) | → | 0(5(1(1(0(4(0(2(4(4(x1)))))))))) | (19) |
3(5(4(2(1(0(x1)))))) | → | 2(5(0(0(0(0(0(4(4(0(x1)))))))))) | (20) |
4(1(3(4(3(1(x1)))))) | → | 4(2(5(0(1(0(0(0(4(4(x1)))))))))) | (21) |
4(2(1(0(2(5(x1)))))) | → | 4(2(5(4(2(2(2(4(2(5(x1)))))))))) | (22) |
4(3(3(5(1(1(x1)))))) | → | 4(4(2(4(4(2(5(0(1(2(x1)))))))))) | (23) |
5(4(0(1(3(0(x1)))))) | → | 0(2(4(2(2(1(2(0(0(0(x1)))))))))) | (24) |
0(4(1(5(5(3(5(x1))))))) | → | 0(2(2(0(1(2(5(2(5(0(x1)))))))))) | (25) |
0(4(4(3(4(1(3(x1))))))) | → | 0(4(2(4(1(3(2(0(2(2(x1)))))))))) | (26) |
1(3(3(4(5(2(5(x1))))))) | → | 1(1(1(4(5(1(2(5(2(4(x1)))))))))) | (27) |
1(5(2(5(1(5(2(x1))))))) | → | 1(2(3(0(2(3(0(1(0(2(x1)))))))))) | (28) |
1(5(3(2(4(5(4(x1))))))) | → | 1(1(0(3(0(0(0(0(3(4(x1)))))))))) | (29) |
1(5(5(5(3(2(1(x1))))))) | → | 1(4(1(4(2(1(3(0(1(1(x1)))))))))) | (30) |
2(1(2(3(1(3(3(x1))))))) | → | 2(1(4(1(5(1(1(1(1(1(x1)))))))))) | (31) |
3(0(2(1(3(2(1(x1))))))) | → | 1(2(0(0(3(3(4(2(2(1(x1)))))))))) | (32) |
3(0(4(4(3(4(5(x1))))))) | → | 1(2(2(4(3(2(2(2(0(4(x1)))))))))) | (33) |
3(1(3(1(5(4(1(x1))))))) | → | 0(1(2(2(5(5(5(4(2(0(x1)))))))))) | (34) |
3(2(5(2(1(3(4(x1))))))) | → | 0(2(1(3(1(2(1(4(2(2(x1)))))))))) | (35) |
3(3(1(3(1(3(3(x1))))))) | → | 1(2(1(3(0(5(5(1(2(1(x1)))))))))) | (36) |
3(3(1(5(0(3(4(x1))))))) | → | 2(0(0(5(1(2(1(4(1(4(x1)))))))))) | (37) |
3(3(3(5(2(4(5(x1))))))) | → | 3(1(0(0(1(4(2(2(0(5(x1)))))))))) | (38) |
3(4(3(3(4(3(5(x1))))))) | → | 5(1(1(1(1(1(4(2(3(3(x1)))))))))) | (39) |
3(4(3(4(4(3(2(x1))))))) | → | 2(5(4(5(3(4(2(4(4(0(x1)))))))))) | (40) |
4(1(3(4(1(0(2(x1))))))) | → | 4(4(1(5(1(2(1(4(2(2(x1)))))))))) | (41) |
4(5(0(4(1(3(1(x1))))))) | → | 1(1(1(2(0(0(4(4(5(1(x1)))))))))) | (42) |
4(5(0(5(3(2(1(x1))))))) | → | 1(1(4(1(3(0(2(4(2(1(x1)))))))))) | (43) |
4(5(0(5(3(4(5(x1))))))) | → | 1(1(1(0(5(4(0(2(4(5(x1)))))))))) | (44) |
4(5(3(1(4(4(3(x1))))))) | → | 4(5(5(5(4(2(4(4(2(3(x1)))))))))) | (45) |
4(5(3(4(1(4(5(x1))))))) | → | 4(5(4(0(2(0(1(2(1(0(x1)))))))))) | (46) |
4(5(4(3(4(1(0(x1))))))) | → | 1(4(1(1(2(4(0(1(2(0(x1)))))))))) | (47) |
5(3(2(1(5(3(4(x1))))))) | → | 5(1(2(1(3(3(5(1(2(4(x1)))))))))) | (48) |
5(3(4(3(1(3(3(x1))))))) | → | 5(1(1(4(2(4(3(3(4(3(x1)))))))))) | (49) |
5(3(4(4(3(1(2(x1))))))) | → | 5(1(0(5(0(3(5(1(1(1(x1)))))))))) | (50) |
5(4(3(2(3(1(3(x1))))))) | → | 0(0(0(2(3(0(2(5(4(3(x1)))))))))) | (51) |
5(4(3(4(3(1(5(x1))))))) | → | 0(2(0(0(0(0(4(1(5(0(x1)))))))))) | (52) |
5(5(3(3(3(5(4(x1))))))) | → | 0(3(5(2(2(1(0(4(2(2(x1)))))))))) | (53) |
5(5(4(5(3(5(5(x1))))))) | → | 5(2(4(2(2(2(4(1(5(2(x1)))))))))) | (54) |
{5(☐), 4(☐), 3(☐), 2(☐), 1(☐), 0(☐)}
We obtain the transformed TRSThere are 324 ruless (increase limit for explicit display).
As carrier we take the set {0,...,5}. Symbols are labeled by the interpretation of their arguments using the interpretations (modulo 6):
[5(x1)] | = | 6x1 + 0 |
[4(x1)] | = | 6x1 + 1 |
[3(x1)] | = | 6x1 + 2 |
[2(x1)] | = | 6x1 + 3 |
[1(x1)] | = | 6x1 + 4 |
[0(x1)] | = | 6x1 + 5 |
There are 1944 ruless (increase limit for explicit display).
[50(x1)] | = |
x1 +
|
||||
[51(x1)] | = |
x1 +
|
||||
[52(x1)] | = |
x1 +
|
||||
[53(x1)] | = |
x1 +
|
||||
[54(x1)] | = |
x1 +
|
||||
[55(x1)] | = |
x1 +
|
||||
[40(x1)] | = |
x1 +
|
||||
[41(x1)] | = |
x1 +
|
||||
[42(x1)] | = |
x1 +
|
||||
[43(x1)] | = |
x1 +
|
||||
[44(x1)] | = |
x1 +
|
||||
[45(x1)] | = |
x1 +
|
||||
[30(x1)] | = |
x1 +
|
||||
[31(x1)] | = |
x1 +
|
||||
[32(x1)] | = |
x1 +
|
||||
[33(x1)] | = |
x1 +
|
||||
[34(x1)] | = |
x1 +
|
||||
[35(x1)] | = |
x1 +
|
||||
[20(x1)] | = |
x1 +
|
||||
[21(x1)] | = |
x1 +
|
||||
[22(x1)] | = |
x1 +
|
||||
[23(x1)] | = |
x1 +
|
||||
[24(x1)] | = |
x1 +
|
||||
[25(x1)] | = |
x1 +
|
||||
[10(x1)] | = |
x1 +
|
||||
[11(x1)] | = |
x1 +
|
||||
[12(x1)] | = |
x1 +
|
||||
[13(x1)] | = |
x1 +
|
||||
[14(x1)] | = |
x1 +
|
||||
[15(x1)] | = |
x1 +
|
||||
[00(x1)] | = |
x1 +
|
||||
[01(x1)] | = |
x1 +
|
||||
[02(x1)] | = |
x1 +
|
||||
[03(x1)] | = |
x1 +
|
||||
[04(x1)] | = |
x1 +
|
||||
[05(x1)] | = |
x1 +
|
There are 1932 ruless (increase limit for explicit display).
14(04(15(04(05(x1))))) | → | 24(23(23(13(04(05(15(14(14(04(05(x1))))))))))) | (2323) |
13(04(15(04(05(x1))))) | → | 23(23(23(13(04(05(15(14(14(04(05(x1))))))))))) | (2324) |
14(04(15(04(15(x1))))) | → | 24(23(23(13(04(05(15(14(14(04(15(x1))))))))))) | (2325) |
13(04(15(04(15(x1))))) | → | 23(23(23(13(04(05(15(14(14(04(15(x1))))))))))) | (2326) |
14(04(15(04(25(x1))))) | → | 24(23(23(13(04(05(15(14(14(04(25(x1))))))))))) | (2327) |
13(04(15(04(25(x1))))) | → | 23(23(23(13(04(05(15(14(14(04(25(x1))))))))))) | (2328) |
14(04(15(04(35(x1))))) | → | 24(23(23(13(04(05(15(14(14(04(35(x1))))))))))) | (2329) |
13(04(15(04(35(x1))))) | → | 23(23(23(13(04(05(15(14(14(04(35(x1))))))))))) | (2330) |
14(04(15(04(45(x1))))) | → | 24(23(23(13(04(05(15(14(14(04(45(x1))))))))))) | (2331) |
13(04(15(04(45(x1))))) | → | 23(23(23(13(04(05(15(14(14(04(45(x1))))))))))) | (2332) |
14(04(15(04(55(x1))))) | → | 24(23(23(13(04(05(15(14(14(04(55(x1))))))))))) | (2333) |
13(04(15(04(55(x1))))) | → | 23(23(23(13(04(05(15(14(14(04(55(x1))))))))))) | (2334) |
13#(04(15(04(55(x1))))) | → | 13#(04(05(15(14(14(04(55(x1)))))))) | (2335) |
13#(04(15(04(55(x1))))) | → | 14#(14(04(55(x1)))) | (2336) |
13#(04(15(04(55(x1))))) | → | 14#(04(55(x1))) | (2337) |
13#(04(15(04(45(x1))))) | → | 13#(04(05(15(14(14(04(45(x1)))))))) | (2338) |
13#(04(15(04(45(x1))))) | → | 14#(14(04(45(x1)))) | (2339) |
13#(04(15(04(45(x1))))) | → | 14#(04(45(x1))) | (2340) |
13#(04(15(04(35(x1))))) | → | 13#(04(05(15(14(14(04(35(x1)))))))) | (2341) |
13#(04(15(04(35(x1))))) | → | 14#(14(04(35(x1)))) | (2342) |
13#(04(15(04(35(x1))))) | → | 14#(04(35(x1))) | (2343) |
13#(04(15(04(25(x1))))) | → | 13#(04(05(15(14(14(04(25(x1)))))))) | (2344) |
13#(04(15(04(25(x1))))) | → | 14#(14(04(25(x1)))) | (2345) |
13#(04(15(04(25(x1))))) | → | 14#(04(25(x1))) | (2346) |
13#(04(15(04(15(x1))))) | → | 13#(04(05(15(14(14(04(15(x1)))))))) | (2347) |
13#(04(15(04(15(x1))))) | → | 14#(14(04(15(x1)))) | (2348) |
13#(04(15(04(15(x1))))) | → | 14#(04(15(x1))) | (2349) |
13#(04(15(04(05(x1))))) | → | 13#(04(05(15(14(14(04(05(x1)))))))) | (2350) |
13#(04(15(04(05(x1))))) | → | 14#(14(04(05(x1)))) | (2351) |
13#(04(15(04(05(x1))))) | → | 14#(04(05(x1))) | (2352) |
14#(04(15(04(55(x1))))) | → | 13#(04(05(15(14(14(04(55(x1)))))))) | (2353) |
14#(04(15(04(55(x1))))) | → | 14#(14(04(55(x1)))) | (2354) |
14#(04(15(04(55(x1))))) | → | 14#(04(55(x1))) | (2355) |
14#(04(15(04(45(x1))))) | → | 13#(04(05(15(14(14(04(45(x1)))))))) | (2356) |
14#(04(15(04(45(x1))))) | → | 14#(14(04(45(x1)))) | (2357) |
14#(04(15(04(45(x1))))) | → | 14#(04(45(x1))) | (2358) |
14#(04(15(04(35(x1))))) | → | 13#(04(05(15(14(14(04(35(x1)))))))) | (2359) |
14#(04(15(04(35(x1))))) | → | 14#(14(04(35(x1)))) | (2360) |
14#(04(15(04(35(x1))))) | → | 14#(04(35(x1))) | (2361) |
14#(04(15(04(25(x1))))) | → | 13#(04(05(15(14(14(04(25(x1)))))))) | (2362) |
14#(04(15(04(25(x1))))) | → | 14#(14(04(25(x1)))) | (2363) |
14#(04(15(04(25(x1))))) | → | 14#(04(25(x1))) | (2364) |
14#(04(15(04(15(x1))))) | → | 13#(04(05(15(14(14(04(15(x1)))))))) | (2365) |
14#(04(15(04(15(x1))))) | → | 14#(14(04(15(x1)))) | (2366) |
14#(04(15(04(15(x1))))) | → | 14#(04(15(x1))) | (2367) |
14#(04(15(04(05(x1))))) | → | 13#(04(05(15(14(14(04(05(x1)))))))) | (2368) |
14#(04(15(04(05(x1))))) | → | 14#(14(04(05(x1)))) | (2369) |
14#(04(15(04(05(x1))))) | → | 14#(04(05(x1))) | (2370) |
[55(x1)] | = |
x1 +
|
||||
[45(x1)] | = |
x1 +
|
||||
[35(x1)] | = |
x1 +
|
||||
[23(x1)] | = |
x1 +
|
||||
[24(x1)] | = |
x1 +
|
||||
[25(x1)] | = |
x1 +
|
||||
[13(x1)] | = |
x1 +
|
||||
[14(x1)] | = |
x1 +
|
||||
[15(x1)] | = |
x1 +
|
||||
[04(x1)] | = |
x1 +
|
||||
[05(x1)] | = |
x1 +
|
||||
[13#(x1)] | = |
x1 +
|
||||
[14#(x1)] | = |
x1 +
|
14(04(15(04(05(x1))))) | → | 24(23(23(13(04(05(15(14(14(04(05(x1))))))))))) | (2323) |
13(04(15(04(05(x1))))) | → | 23(23(23(13(04(05(15(14(14(04(05(x1))))))))))) | (2324) |
14(04(15(04(15(x1))))) | → | 24(23(23(13(04(05(15(14(14(04(15(x1))))))))))) | (2325) |
13(04(15(04(15(x1))))) | → | 23(23(23(13(04(05(15(14(14(04(15(x1))))))))))) | (2326) |
14(04(15(04(25(x1))))) | → | 24(23(23(13(04(05(15(14(14(04(25(x1))))))))))) | (2327) |
13(04(15(04(25(x1))))) | → | 23(23(23(13(04(05(15(14(14(04(25(x1))))))))))) | (2328) |
14(04(15(04(35(x1))))) | → | 24(23(23(13(04(05(15(14(14(04(35(x1))))))))))) | (2329) |
13(04(15(04(35(x1))))) | → | 23(23(23(13(04(05(15(14(14(04(35(x1))))))))))) | (2330) |
14(04(15(04(45(x1))))) | → | 24(23(23(13(04(05(15(14(14(04(45(x1))))))))))) | (2331) |
13(04(15(04(45(x1))))) | → | 23(23(23(13(04(05(15(14(14(04(45(x1))))))))))) | (2332) |
14(04(15(04(55(x1))))) | → | 24(23(23(13(04(05(15(14(14(04(55(x1))))))))))) | (2333) |
13(04(15(04(55(x1))))) | → | 23(23(23(13(04(05(15(14(14(04(55(x1))))))))))) | (2334) |
13#(04(15(04(55(x1))))) | → | 14#(14(04(55(x1)))) | (2336) |
13#(04(15(04(55(x1))))) | → | 14#(04(55(x1))) | (2337) |
13#(04(15(04(45(x1))))) | → | 14#(14(04(45(x1)))) | (2339) |
13#(04(15(04(45(x1))))) | → | 14#(04(45(x1))) | (2340) |
13#(04(15(04(35(x1))))) | → | 14#(14(04(35(x1)))) | (2342) |
13#(04(15(04(35(x1))))) | → | 14#(04(35(x1))) | (2343) |
13#(04(15(04(25(x1))))) | → | 14#(14(04(25(x1)))) | (2345) |
13#(04(15(04(25(x1))))) | → | 14#(04(25(x1))) | (2346) |
13#(04(15(04(15(x1))))) | → | 14#(14(04(15(x1)))) | (2348) |
13#(04(15(04(15(x1))))) | → | 14#(04(15(x1))) | (2349) |
13#(04(15(04(05(x1))))) | → | 14#(14(04(05(x1)))) | (2351) |
13#(04(15(04(05(x1))))) | → | 14#(04(05(x1))) | (2352) |
14#(04(15(04(55(x1))))) | → | 13#(04(05(15(14(14(04(55(x1)))))))) | (2353) |
14#(04(15(04(55(x1))))) | → | 14#(14(04(55(x1)))) | (2354) |
14#(04(15(04(55(x1))))) | → | 14#(04(55(x1))) | (2355) |
14#(04(15(04(45(x1))))) | → | 13#(04(05(15(14(14(04(45(x1)))))))) | (2356) |
14#(04(15(04(45(x1))))) | → | 14#(14(04(45(x1)))) | (2357) |
14#(04(15(04(45(x1))))) | → | 14#(04(45(x1))) | (2358) |
14#(04(15(04(35(x1))))) | → | 13#(04(05(15(14(14(04(35(x1)))))))) | (2359) |
14#(04(15(04(35(x1))))) | → | 14#(14(04(35(x1)))) | (2360) |
14#(04(15(04(35(x1))))) | → | 14#(04(35(x1))) | (2361) |
14#(04(15(04(25(x1))))) | → | 13#(04(05(15(14(14(04(25(x1)))))))) | (2362) |
14#(04(15(04(25(x1))))) | → | 14#(14(04(25(x1)))) | (2363) |
14#(04(15(04(25(x1))))) | → | 14#(04(25(x1))) | (2364) |
14#(04(15(04(15(x1))))) | → | 13#(04(05(15(14(14(04(15(x1)))))))) | (2365) |
14#(04(15(04(15(x1))))) | → | 14#(14(04(15(x1)))) | (2366) |
14#(04(15(04(15(x1))))) | → | 14#(04(15(x1))) | (2367) |
14#(04(15(04(05(x1))))) | → | 13#(04(05(15(14(14(04(05(x1)))))))) | (2368) |
14#(04(15(04(05(x1))))) | → | 14#(14(04(05(x1)))) | (2369) |
14#(04(15(04(05(x1))))) | → | 14#(04(05(x1))) | (2370) |
The dependency pairs are split into 0 components.