The rewrite relation of the following TRS is considered.
| b(a(x1)) | → | a(a(d(x1))) | (1) |
| a(c(x1)) | → | b(b(x1)) | (2) |
| d(a(b(x1))) | → | b(d(d(c(x1)))) | (3) |
| d(x1) | → | a(x1) | (4) |
| b(a(c(a(x1)))) | → | x1 | (5) |
| a(b(x1)) | → | d(a(a(x1))) | (6) |
| c(a(x1)) | → | b(b(x1)) | (7) |
| b(a(d(x1))) | → | c(d(d(b(x1)))) | (8) |
| d(x1) | → | a(x1) | (4) |
| a(c(a(b(x1)))) | → | x1 | (9) |
| d#(x1) | → | a#(x1) | (10) |
| c#(a(x1)) | → | b#(x1) | (11) |
| c#(a(x1)) | → | b#(b(x1)) | (12) |
| b#(a(d(x1))) | → | d#(d(b(x1))) | (13) |
| b#(a(d(x1))) | → | d#(b(x1)) | (14) |
| b#(a(d(x1))) | → | c#(d(d(b(x1)))) | (15) |
| b#(a(d(x1))) | → | b#(x1) | (16) |
| a#(b(x1)) | → | d#(a(a(x1))) | (17) |
| a#(b(x1)) | → | a#(x1) | (18) |
| a#(b(x1)) | → | a#(a(x1)) | (19) |
| [d(x1)] | = |
x1 +
|
||||
| [c(x1)] | = |
x1 +
|
||||
| [b(x1)] | = |
x1 +
|
||||
| [a(x1)] | = |
x1 +
|
||||
| [d#(x1)] | = |
x1 +
|
||||
| [c#(x1)] | = |
x1 +
|
||||
| [b#(x1)] | = |
x1 +
|
||||
| [a#(x1)] | = |
x1 +
|
| a(b(x1)) | → | d(a(a(x1))) | (6) |
| c(a(x1)) | → | b(b(x1)) | (7) |
| b(a(d(x1))) | → | c(d(d(b(x1)))) | (8) |
| d(x1) | → | a(x1) | (4) |
| a(c(a(b(x1)))) | → | x1 | (9) |
| b#(a(d(x1))) | → | d#(d(b(x1))) | (13) |
| b#(a(d(x1))) | → | d#(b(x1)) | (14) |
The dependency pairs are split into 2 components.
| d#(x1) | → | a#(x1) | (10) |
| a#(b(x1)) | → | d#(a(a(x1))) | (17) |
| a#(b(x1)) | → | a#(x1) | (18) |
| a#(b(x1)) | → | a#(a(x1)) | (19) |
| [d(x1)] | = |
x1 +
|
||||
| [c(x1)] | = |
x1 +
|
||||
| [b(x1)] | = |
x1 +
|
||||
| [a(x1)] | = |
x1 +
|
||||
| [d#(x1)] | = |
x1 +
|
||||
| [a#(x1)] | = |
x1 +
|
| a(b(x1)) | → | d(a(a(x1))) | (6) |
| d(x1) | → | a(x1) | (4) |
| a(c(a(b(x1)))) | → | x1 | (9) |
| d#(x1) | → | a#(x1) | (10) |
| a#(b(x1)) | → | d#(a(a(x1))) | (17) |
| a#(b(x1)) | → | a#(x1) | (18) |
| a#(b(x1)) | → | a#(a(x1)) | (19) |
| a(b(x1)) | → | d(a(a(x1))) | (6) |
| d(x1) | → | a(x1) | (4) |
| a(c(a(b(x1)))) | → | x1 | (9) |
The dependency pairs are split into 0 components.
| c#(a(x1)) | → | b#(x1) | (11) |
| b#(a(d(x1))) | → | c#(d(d(b(x1)))) | (15) |
| c#(a(x1)) | → | b#(b(x1)) | (12) |
| b#(a(d(x1))) | → | b#(x1) | (16) |
| [d(x1)] | = |
|
||||||||||||
| [c(x1)] | = |
|
||||||||||||
| [b(x1)] | = |
|
||||||||||||
| [a(x1)] | = |
|
||||||||||||
| [c#(x1)] | = |
|
||||||||||||
| [b#(x1)] | = |
|
| a(b(x1)) | → | d(a(a(x1))) | (6) |
| c(a(x1)) | → | b(b(x1)) | (7) |
| b(a(d(x1))) | → | c(d(d(b(x1)))) | (8) |
| d(x1) | → | a(x1) | (4) |
| a(c(a(b(x1)))) | → | x1 | (9) |
| c#(a(x1)) | → | b#(b(x1)) | (12) |
The dependency pairs are split into 1 component.
| c#(a(x1)) | → | b#(x1) | (11) |
| b#(a(d(x1))) | → | c#(d(d(b(x1)))) | (15) |
| b#(a(d(x1))) | → | b#(x1) | (16) |
| [d(x1)] | = |
|
||||||||||||||||||
| [c(x1)] | = |
|
||||||||||||||||||
| [b(x1)] | = |
|
||||||||||||||||||
| [a(x1)] | = |
|
||||||||||||||||||
| [c#(x1)] | = |
|
||||||||||||||||||
| [b#(x1)] | = |
|
| a(b(x1)) | → | d(a(a(x1))) | (6) |
| c(a(x1)) | → | b(b(x1)) | (7) |
| b(a(d(x1))) | → | c(d(d(b(x1)))) | (8) |
| d(x1) | → | a(x1) | (4) |
| a(c(a(b(x1)))) | → | x1 | (9) |
| c#(a(x1)) | → | b#(x1) | (11) |
| b#(a(d(x1))) | → | b#(x1) | (16) |
| [d(x1)] | = |
x1 +
|
||||
| [c(x1)] | = |
x1 +
|
||||
| [b(x1)] | = |
x1 +
|
||||
| [a(x1)] | = |
x1 +
|
||||
| [c#(x1)] | = |
x1 +
|
||||
| [b#(x1)] | = |
x1 +
|
| a(b(x1)) | → | d(a(a(x1))) | (6) |
| c(a(x1)) | → | b(b(x1)) | (7) |
| b(a(d(x1))) | → | c(d(d(b(x1)))) | (8) |
| d(x1) | → | a(x1) | (4) |
| a(c(a(b(x1)))) | → | x1 | (9) |
| b#(a(d(x1))) | → | c#(d(d(b(x1)))) | (15) |
The dependency pairs are split into 0 components.