The rewrite relation of the following TRS is considered.
| r(e(x1)) | → | w(r(x1)) | (1) |
| i(t(x1)) | → | e(r(x1)) | (2) |
| e(w(x1)) | → | r(i(x1)) | (3) |
| t(e(x1)) | → | r(e(x1)) | (4) |
| w(r(x1)) | → | i(t(x1)) | (5) |
| e(r(x1)) | → | e(w(x1)) | (6) |
| r(i(t(e(r(x1))))) | → | e(w(r(i(t(e(x1)))))) | (7) |
| [i(x1)] | = |
x1 +
|
||||
| [e(x1)] | = |
x1 +
|
||||
| [w(x1)] | = |
x1 +
|
||||
| [t(x1)] | = |
x1 +
|
||||
| [r(x1)] | = |
x1 +
|
| t(e(x1)) | → | r(e(x1)) | (4) |
| e(r(x1)) | → | e(w(x1)) | (6) |
| e(r(x1)) | → | r(w(x1)) | (8) |
| t(i(x1)) | → | r(e(x1)) | (9) |
| w(e(x1)) | → | i(r(x1)) | (10) |
| r(w(x1)) | → | t(i(x1)) | (11) |
| r(e(t(i(r(x1))))) | → | e(t(i(r(w(e(x1)))))) | (12) |
| e#(r(x1)) | → | w#(x1) | (13) |
| e#(r(x1)) | → | r#(w(x1)) | (14) |
| w#(e(x1)) | → | r#(x1) | (15) |
| t#(i(x1)) | → | e#(x1) | (16) |
| t#(i(x1)) | → | r#(e(x1)) | (17) |
| r#(e(t(i(r(x1))))) | → | e#(x1) | (18) |
| r#(e(t(i(r(x1))))) | → | e#(t(i(r(w(e(x1)))))) | (19) |
| r#(e(t(i(r(x1))))) | → | w#(e(x1)) | (20) |
| r#(e(t(i(r(x1))))) | → | t#(i(r(w(e(x1))))) | (21) |
| r#(e(t(i(r(x1))))) | → | r#(w(e(x1))) | (22) |
| r#(w(x1)) | → | t#(i(x1)) | (23) |
| [i(x1)] | = |
x1 +
|
||||
| [e(x1)] | = |
x1 +
|
||||
| [w(x1)] | = |
x1 +
|
||||
| [t(x1)] | = |
x1 +
|
||||
| [r(x1)] | = |
x1 +
|
||||
| [e#(x1)] | = |
x1 +
|
||||
| [w#(x1)] | = |
x1 +
|
||||
| [t#(x1)] | = |
x1 +
|
||||
| [r#(x1)] | = |
x1 +
|
| e(r(x1)) | → | r(w(x1)) | (8) |
| t(i(x1)) | → | r(e(x1)) | (9) |
| w(e(x1)) | → | i(r(x1)) | (10) |
| r(w(x1)) | → | t(i(x1)) | (11) |
| r(e(t(i(r(x1))))) | → | e(t(i(r(w(e(x1)))))) | (12) |
| e#(r(x1)) | → | w#(x1) | (13) |
| w#(e(x1)) | → | r#(x1) | (15) |
| t#(i(x1)) | → | e#(x1) | (16) |
| r#(e(t(i(r(x1))))) | → | e#(x1) | (18) |
| r#(e(t(i(r(x1))))) | → | w#(e(x1)) | (20) |
| r#(e(t(i(r(x1))))) | → | t#(i(r(w(e(x1))))) | (21) |
| r#(e(t(i(r(x1))))) | → | r#(w(e(x1))) | (22) |
The dependency pairs are split into 1 component.
| e#(r(x1)) | → | r#(w(x1)) | (14) |
| r#(e(t(i(r(x1))))) | → | e#(t(i(r(w(e(x1)))))) | (19) |
| r#(w(x1)) | → | t#(i(x1)) | (23) |
| t#(i(x1)) | → | r#(e(x1)) | (17) |
| [i(x1)] | = |
|
||||||||||||||||||
| [e(x1)] | = |
|
||||||||||||||||||
| [w(x1)] | = |
|
||||||||||||||||||
| [t(x1)] | = |
|
||||||||||||||||||
| [r(x1)] | = |
|
||||||||||||||||||
| [e#(x1)] | = |
|
||||||||||||||||||
| [t#(x1)] | = |
|
||||||||||||||||||
| [r#(x1)] | = |
|
| e(r(x1)) | → | r(w(x1)) | (8) |
| t(i(x1)) | → | r(e(x1)) | (9) |
| w(e(x1)) | → | i(r(x1)) | (10) |
| r(w(x1)) | → | t(i(x1)) | (11) |
| r(e(t(i(r(x1))))) | → | e(t(i(r(w(e(x1)))))) | (12) |
| e#(r(x1)) | → | r#(w(x1)) | (14) |
| [i(x1)] | = |
x1 +
|
||||
| [e(x1)] | = |
x1 +
|
||||
| [w(x1)] | = |
x1 +
|
||||
| [t(x1)] | = |
x1 +
|
||||
| [r(x1)] | = |
x1 +
|
||||
| [e#(x1)] | = |
x1 +
|
||||
| [t#(x1)] | = |
x1 +
|
||||
| [r#(x1)] | = |
x1 +
|
| e(r(x1)) | → | r(w(x1)) | (8) |
| t(i(x1)) | → | r(e(x1)) | (9) |
| w(e(x1)) | → | i(r(x1)) | (10) |
| r(w(x1)) | → | t(i(x1)) | (11) |
| r(e(t(i(r(x1))))) | → | e(t(i(r(w(e(x1)))))) | (12) |
| r#(e(t(i(r(x1))))) | → | e#(t(i(r(w(e(x1)))))) | (19) |
The dependency pairs are split into 1 component.
| r#(w(x1)) | → | t#(i(x1)) | (23) |
| t#(i(x1)) | → | r#(e(x1)) | (17) |
| [i(x1)] | = |
|
||||||||||||
| [e(x1)] | = |
|
||||||||||||
| [w(x1)] | = |
|
||||||||||||
| [t(x1)] | = |
|
||||||||||||
| [r(x1)] | = |
|
||||||||||||
| [t#(x1)] | = |
|
||||||||||||
| [r#(x1)] | = |
|
| e(r(x1)) | → | r(w(x1)) | (8) |
| t(i(x1)) | → | r(e(x1)) | (9) |
| w(e(x1)) | → | i(r(x1)) | (10) |
| r(w(x1)) | → | t(i(x1)) | (11) |
| r(e(t(i(r(x1))))) | → | e(t(i(r(w(e(x1)))))) | (12) |
| t#(i(x1)) | → | r#(e(x1)) | (17) |
| [i(x1)] | = |
x1 +
|
||||
| [e(x1)] | = |
x1 +
|
||||
| [w(x1)] | = |
x1 +
|
||||
| [t(x1)] | = |
x1 +
|
||||
| [r(x1)] | = |
x1 +
|
||||
| [t#(x1)] | = |
x1 +
|
||||
| [r#(x1)] | = |
x1 +
|
| e(r(x1)) | → | r(w(x1)) | (8) |
| t(i(x1)) | → | r(e(x1)) | (9) |
| w(e(x1)) | → | i(r(x1)) | (10) |
| r(w(x1)) | → | t(i(x1)) | (11) |
| r(e(t(i(r(x1))))) | → | e(t(i(r(w(e(x1)))))) | (12) |
| r#(w(x1)) | → | t#(i(x1)) | (23) |
The dependency pairs are split into 0 components.